{"title":"Performance at maximum cooling power for a parallelly connected two quantum dots refrigerator","authors":"Asmamaw Tesega","doi":"10.1140/epjb/s10051-024-00835-9","DOIUrl":null,"url":null,"abstract":"<p>In this paper, we examine the performance characteristics at maximum cooling power for a parallelly connected two quantum dots refrigerator within the framework of ballistic electron transport between two reservoirs. The coefficient of performance (COP) at the maximum cooling power, which depends on the Carnot bound, was analyzed for a refrigerator of the quantum dot(QD) system and successfully compared with the Curzon–Ahlborn coefficient of performance. Besides, the coefficient of performance at the maximum cooling power of the model was demonstrated through numerical analysis. Our results indicate that the coefficient of performance at maximum cooling power differs from the Curzon–Ahlborn coefficient of performance in the limit of a small Carnot coefficient of performance. It is constrained by an upper bound of <span>\\(\\varepsilon _C\\)</span> and a lower bound of <span>\\(\\varepsilon _{CA}\\)</span>.</p>","PeriodicalId":787,"journal":{"name":"The European Physical Journal B","volume":"97 12","pages":""},"PeriodicalIF":1.6000,"publicationDate":"2024-12-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"The European Physical Journal B","FirstCategoryId":"4","ListUrlMain":"https://link.springer.com/article/10.1140/epjb/s10051-024-00835-9","RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"PHYSICS, CONDENSED MATTER","Score":null,"Total":0}
Performance at maximum cooling power for a parallelly connected two quantum dots refrigerator
In this paper, we examine the performance characteristics at maximum cooling power for a parallelly connected two quantum dots refrigerator within the framework of ballistic electron transport between two reservoirs. The coefficient of performance (COP) at the maximum cooling power, which depends on the Carnot bound, was analyzed for a refrigerator of the quantum dot(QD) system and successfully compared with the Curzon–Ahlborn coefficient of performance. Besides, the coefficient of performance at the maximum cooling power of the model was demonstrated through numerical analysis. Our results indicate that the coefficient of performance at maximum cooling power differs from the Curzon–Ahlborn coefficient of performance in the limit of a small Carnot coefficient of performance. It is constrained by an upper bound of \(\varepsilon _C\) and a lower bound of \(\varepsilon _{CA}\).