Gabriela Gleiser, Julio M. Alcántara, Jordi Bascompte, José L. Garrido, Alicia Montesinos-Navarro, Gustavo B. Paterno, Alfonso Valiente-Banuet, Miguel Verdú
{"title":"招聘网络的系统发育结构","authors":"Gabriela Gleiser, Julio M. Alcántara, Jordi Bascompte, José L. Garrido, Alicia Montesinos-Navarro, Gustavo B. Paterno, Alfonso Valiente-Banuet, Miguel Verdú","doi":"10.1111/geb.13944","DOIUrl":null,"url":null,"abstract":"<div>\n \n \n <section>\n \n <h3> Aim</h3>\n \n <p>Plant recruitment involves both stochastic and deterministic processes. Recruits may establish independently or interact nonrandomly with canopy plants. We explore this deterministic aspect by testing whether recruitment patterns are influenced by the phylogenetic history of canopy and recruiting plants. Since the effect of canopy plants in recruitment can be positive (facilitation), negative (competition) or neutral, we also estimated the phylogenetic signal separately for each interaction type. Furthermore, we assessed whether environmental stress influenced the phylogenetic signal, under the expectation that more severe environmental conditions will lead to stronger phylogenetic signatures in network structure.</p>\n </section>\n \n <section>\n \n <h3> Location</h3>\n \n <p>Global.</p>\n </section>\n \n <section>\n \n <h3> Time Period</h3>\n \n <p>1998–2021.</p>\n </section>\n \n <section>\n \n <h3> Major Taxa Studied</h3>\n \n <p>Angiospermae.</p>\n </section>\n \n <section>\n \n <h3> Methods</h3>\n \n <p>We analysed recruitment interactions occurring in 133 plant communities included in the RecruitNet database, which encompasses a wide range of biomes and vegetation types. The phylogenetic signal in canopy–recruit interactions was quantified in different dimensions of the recruitment niche, represented by the level of interaction generalisation, and by the taxonomic and evolutionary composition of the group of canopy plants.</p>\n </section>\n \n <section>\n \n <h3> Results</h3>\n \n <p>We found significant phylogenetic signals in more networks than expected by chance. Canopies’ evolutionary history influenced facilitative and competitive but not neutral interactions. The phylogenetic signal in the recruitment niche strengthened in arid regions, suggesting that stressful habitats promote the occurrence of conserved recruitment interactions where closely related species recruit in association with closely related canopy species.</p>\n </section>\n \n <section>\n \n <h3> Main Conclusions</h3>\n \n <p>Despite the strong influence of stochastic processes on plant recruitment, evolutionary history plays a significant role in driving the recruitment process, especially in harsh environments. In particular, the historical effect becomes more important when canopy species have a significant impact on the performance of recruits, either through facilitation or competition. More generally, we show that the analysis of different dimensions of the ecological niche can reveal important insights on the functional roles of interacting species.</p>\n </section>\n </div>","PeriodicalId":176,"journal":{"name":"Global Ecology and Biogeography","volume":"34 1","pages":""},"PeriodicalIF":6.3000,"publicationDate":"2024-12-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1111/geb.13944","citationCount":"0","resultStr":"{\"title\":\"The Phylogenetic Architecture of Recruitment Networks\",\"authors\":\"Gabriela Gleiser, Julio M. Alcántara, Jordi Bascompte, José L. Garrido, Alicia Montesinos-Navarro, Gustavo B. Paterno, Alfonso Valiente-Banuet, Miguel Verdú\",\"doi\":\"10.1111/geb.13944\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div>\\n \\n \\n <section>\\n \\n <h3> Aim</h3>\\n \\n <p>Plant recruitment involves both stochastic and deterministic processes. Recruits may establish independently or interact nonrandomly with canopy plants. We explore this deterministic aspect by testing whether recruitment patterns are influenced by the phylogenetic history of canopy and recruiting plants. Since the effect of canopy plants in recruitment can be positive (facilitation), negative (competition) or neutral, we also estimated the phylogenetic signal separately for each interaction type. Furthermore, we assessed whether environmental stress influenced the phylogenetic signal, under the expectation that more severe environmental conditions will lead to stronger phylogenetic signatures in network structure.</p>\\n </section>\\n \\n <section>\\n \\n <h3> Location</h3>\\n \\n <p>Global.</p>\\n </section>\\n \\n <section>\\n \\n <h3> Time Period</h3>\\n \\n <p>1998–2021.</p>\\n </section>\\n \\n <section>\\n \\n <h3> Major Taxa Studied</h3>\\n \\n <p>Angiospermae.</p>\\n </section>\\n \\n <section>\\n \\n <h3> Methods</h3>\\n \\n <p>We analysed recruitment interactions occurring in 133 plant communities included in the RecruitNet database, which encompasses a wide range of biomes and vegetation types. The phylogenetic signal in canopy–recruit interactions was quantified in different dimensions of the recruitment niche, represented by the level of interaction generalisation, and by the taxonomic and evolutionary composition of the group of canopy plants.</p>\\n </section>\\n \\n <section>\\n \\n <h3> Results</h3>\\n \\n <p>We found significant phylogenetic signals in more networks than expected by chance. Canopies’ evolutionary history influenced facilitative and competitive but not neutral interactions. The phylogenetic signal in the recruitment niche strengthened in arid regions, suggesting that stressful habitats promote the occurrence of conserved recruitment interactions where closely related species recruit in association with closely related canopy species.</p>\\n </section>\\n \\n <section>\\n \\n <h3> Main Conclusions</h3>\\n \\n <p>Despite the strong influence of stochastic processes on plant recruitment, evolutionary history plays a significant role in driving the recruitment process, especially in harsh environments. In particular, the historical effect becomes more important when canopy species have a significant impact on the performance of recruits, either through facilitation or competition. More generally, we show that the analysis of different dimensions of the ecological niche can reveal important insights on the functional roles of interacting species.</p>\\n </section>\\n </div>\",\"PeriodicalId\":176,\"journal\":{\"name\":\"Global Ecology and Biogeography\",\"volume\":\"34 1\",\"pages\":\"\"},\"PeriodicalIF\":6.3000,\"publicationDate\":\"2024-12-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://onlinelibrary.wiley.com/doi/epdf/10.1111/geb.13944\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Global Ecology and Biogeography\",\"FirstCategoryId\":\"93\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1111/geb.13944\",\"RegionNum\":1,\"RegionCategory\":\"环境科学与生态学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ECOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Global Ecology and Biogeography","FirstCategoryId":"93","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1111/geb.13944","RegionNum":1,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ECOLOGY","Score":null,"Total":0}
The Phylogenetic Architecture of Recruitment Networks
Aim
Plant recruitment involves both stochastic and deterministic processes. Recruits may establish independently or interact nonrandomly with canopy plants. We explore this deterministic aspect by testing whether recruitment patterns are influenced by the phylogenetic history of canopy and recruiting plants. Since the effect of canopy plants in recruitment can be positive (facilitation), negative (competition) or neutral, we also estimated the phylogenetic signal separately for each interaction type. Furthermore, we assessed whether environmental stress influenced the phylogenetic signal, under the expectation that more severe environmental conditions will lead to stronger phylogenetic signatures in network structure.
Location
Global.
Time Period
1998–2021.
Major Taxa Studied
Angiospermae.
Methods
We analysed recruitment interactions occurring in 133 plant communities included in the RecruitNet database, which encompasses a wide range of biomes and vegetation types. The phylogenetic signal in canopy–recruit interactions was quantified in different dimensions of the recruitment niche, represented by the level of interaction generalisation, and by the taxonomic and evolutionary composition of the group of canopy plants.
Results
We found significant phylogenetic signals in more networks than expected by chance. Canopies’ evolutionary history influenced facilitative and competitive but not neutral interactions. The phylogenetic signal in the recruitment niche strengthened in arid regions, suggesting that stressful habitats promote the occurrence of conserved recruitment interactions where closely related species recruit in association with closely related canopy species.
Main Conclusions
Despite the strong influence of stochastic processes on plant recruitment, evolutionary history plays a significant role in driving the recruitment process, especially in harsh environments. In particular, the historical effect becomes more important when canopy species have a significant impact on the performance of recruits, either through facilitation or competition. More generally, we show that the analysis of different dimensions of the ecological niche can reveal important insights on the functional roles of interacting species.
期刊介绍:
Global Ecology and Biogeography (GEB) welcomes papers that investigate broad-scale (in space, time and/or taxonomy), general patterns in the organization of ecological systems and assemblages, and the processes that underlie them. In particular, GEB welcomes studies that use macroecological methods, comparative analyses, meta-analyses, reviews, spatial analyses and modelling to arrive at general, conceptual conclusions. Studies in GEB need not be global in spatial extent, but the conclusions and implications of the study must be relevant to ecologists and biogeographers globally, rather than being limited to local areas, or specific taxa. Similarly, GEB is not limited to spatial studies; we are equally interested in the general patterns of nature through time, among taxa (e.g., body sizes, dispersal abilities), through the course of evolution, etc. Further, GEB welcomes papers that investigate general impacts of human activities on ecological systems in accordance with the above criteria.