Zi-Yang Lin, Jun-Zhang Wang, Jian-Bo Cheng, Lu Meng, Shi-Lin Zhu
{"title":"确定 G(3900) 结构为 P 波 DD¯*/D¯D* 共振","authors":"Zi-Yang Lin, Jun-Zhang Wang, Jian-Bo Cheng, Lu Meng, Shi-Lin Zhu","doi":"10.1103/physrevlett.133.241903","DOIUrl":null,"url":null,"abstract":"The BESIII Collaboration recently performed a precise measurement of the e</a:mi>+</a:mo></a:msup>e</a:mi>−</a:mo></a:msup>→</a:mo>D</a:mi>D</a:mi>¯</a:mo></a:mover></a:math> Born cross sections, and confirmed the <f:math xmlns:f=\"http://www.w3.org/1998/Math/MathML\" display=\"inline\"><f:mi>G</f:mi><f:mo stretchy=\"false\">(</f:mo><f:mn>3900</f:mn><f:mo stretchy=\"false\">)</f:mo></f:math> structure reported by and Belle with high significance. We identify the <j:math xmlns:j=\"http://www.w3.org/1998/Math/MathML\" display=\"inline\"><j:mi>G</j:mi><j:mo stretchy=\"false\">(</j:mo><j:mn>3900</j:mn><j:mo stretchy=\"false\">)</j:mo></j:math> as the first <n:math xmlns:n=\"http://www.w3.org/1998/Math/MathML\" display=\"inline\"><n:mi>P</n:mi></n:math>-wave <p:math xmlns:p=\"http://www.w3.org/1998/Math/MathML\" display=\"inline\"><p:mi>D</p:mi><p:msup><p:mover accent=\"true\"><p:mi>D</p:mi><p:mo stretchy=\"false\">¯</p:mo></p:mover><p:mo>*</p:mo></p:msup><p:mo>/</p:mo><p:mover accent=\"true\"><p:mi>D</p:mi><p:mo stretchy=\"false\">¯</p:mo></p:mover><p:msup><p:mi>D</p:mi><p:mo>*</p:mo></p:msup></p:math> molecular resonance. The experimental and theoretical identification of the <v:math xmlns:v=\"http://www.w3.org/1998/Math/MathML\" display=\"inline\"><v:mi>P</v:mi></v:math>-wave dimeson state holds paramount importance in enhancing our comprehension of the nonperturbative QCD and few-body physics. Its existence is firmly established in a unified meson-exchange model that simultaneously depicts the features of the <x:math xmlns:x=\"http://www.w3.org/1998/Math/MathML\" display=\"inline\"><x:msub><x:mi>χ</x:mi><x:mrow><x:mi>c</x:mi><x:mn>1</x:mn></x:mrow></x:msub><x:mo stretchy=\"false\">(</x:mo><x:mn>3872</x:mn><x:mo stretchy=\"false\">)</x:mo></x:math>, <bb:math xmlns:bb=\"http://www.w3.org/1998/Math/MathML\" display=\"inline\"><bb:msub><bb:mi>Z</bb:mi><bb:mi>c</bb:mi></bb:msub><bb:mo stretchy=\"false\">(</bb:mo><bb:mn>3900</bb:mn><bb:mo stretchy=\"false\">)</bb:mo></bb:math>, and <fb:math xmlns:fb=\"http://www.w3.org/1998/Math/MathML\" display=\"inline\"><fb:msub><fb:mi>T</fb:mi><fb:mrow><fb:mi>c</fb:mi><fb:mi>c</fb:mi></fb:mrow></fb:msub><fb:mo stretchy=\"false\">(</fb:mo><fb:mn>3875</fb:mn><fb:mo stretchy=\"false\">)</fb:mo></fb:math>. This scenario can be directly examined in the <jb:math xmlns:jb=\"http://www.w3.org/1998/Math/MathML\" display=\"inline\"><jb:msup><jb:mi>e</jb:mi><jb:mo>+</jb:mo></jb:msup><jb:msup><jb:mi>e</jb:mi><jb:mo>−</jb:mo></jb:msup><jb:mo stretchy=\"false\">→</jb:mo><jb:mi>D</jb:mi><jb:msup><jb:mover accent=\"true\"><jb:mi>D</jb:mi><jb:mo stretchy=\"false\">¯</jb:mo></jb:mover><jb:mo>*</jb:mo></jb:msup><jb:mo>/</jb:mo><jb:mover accent=\"true\"><jb:mi>D</jb:mi><jb:mo stretchy=\"false\">¯</jb:mo></jb:mover><jb:msup><jb:mi>D</jb:mi><jb:mo>*</jb:mo></jb:msup></jb:math> cross section by seeing whether a resonance exists at the threshold. The credibility of the investigations is also ensured by the fact that the <qb:math xmlns:qb=\"http://www.w3.org/1998/Math/MathML\" display=\"inline\"><qb:mi>P</qb:mi></qb:math>-wave interaction dominantly arises from the well-known long-range pion exchange. Additionally, thanks to the centrifugal barrier, it is easier to form resonances in <sb:math xmlns:sb=\"http://www.w3.org/1998/Math/MathML\" display=\"inline\"><sb:mi>P</sb:mi></sb:math>-wave than in <ub:math xmlns:ub=\"http://www.w3.org/1998/Math/MathML\" display=\"inline\"><ub:mi>S</ub:mi></ub:math>-wave. We extensively calculate all systems up to <wb:math xmlns:wb=\"http://www.w3.org/1998/Math/MathML\" display=\"inline\"><wb:mi>P</wb:mi></wb:math>-wave with various quantum numbers and predict a dense population of the <yb:math xmlns:yb=\"http://www.w3.org/1998/Math/MathML\" display=\"inline\"><yb:mi>D</yb:mi><yb:msup><yb:mover accent=\"true\"><yb:mi>D</yb:mi><yb:mo stretchy=\"false\">¯</yb:mo></yb:mover><yb:mo>*</yb:mo></yb:msup><yb:mo>/</yb:mo><yb:mover accent=\"true\"><yb:mi>D</yb:mi><yb:mo stretchy=\"false\">¯</yb:mo></yb:mover><yb:msup><yb:mi>D</yb:mi><yb:mo>*</yb:mo></yb:msup></yb:math> and <ec:math xmlns:ec=\"http://www.w3.org/1998/Math/MathML\" display=\"inline\"><ec:mi>D</ec:mi><ec:msup><ec:mi>D</ec:mi><ec:mo>*</ec:mo></ec:msup></ec:math> states, where the <gc:math xmlns:gc=\"http://www.w3.org/1998/Math/MathML\" display=\"inline\"><gc:mi>S</gc:mi></gc:math>-wave <ic:math xmlns:ic=\"http://www.w3.org/1998/Math/MathML\" display=\"inline\"><ic:mi>D</ic:mi><ic:msup><ic:mover accent=\"true\"><ic:mi>D</ic:mi><ic:mo stretchy=\"false\">¯</ic:mo></ic:mover><ic:mo>*</ic:mo></ic:msup><ic:mo>/</ic:mo><ic:mover accent=\"true\"><ic:mi>D</ic:mi><ic:mo stretchy=\"false\">¯</ic:mo></ic:mover><ic:msup><ic:mi>D</ic:mi><ic:mo>*</ic:mo></ic:msup></ic:math> state with <oc:math xmlns:oc=\"http://www.w3.org/1998/Math/MathML\" display=\"inline\"><oc:msup><oc:mi>I</oc:mi><oc:mi>G</oc:mi></oc:msup><oc:mo stretchy=\"false\">(</oc:mo><oc:msup><oc:mi>J</oc:mi><oc:mrow><oc:mi>P</oc:mi><oc:mi>C</oc:mi></oc:mrow></oc:msup><oc:mo stretchy=\"false\">)</oc:mo><oc:mo>=</oc:mo><oc:msup><oc:mn>0</oc:mn><oc:mo>−</oc:mo></oc:msup><oc:mo stretchy=\"false\">(</oc:mo><oc:msup><oc:mn>1</oc:mn><oc:mrow><oc:mo>+</oc:mo><oc:mo>−</oc:mo></oc:mrow></oc:msup><oc:mo stretchy=\"false\">)</oc:mo></oc:math>, <uc:math xmlns:uc=\"http://www.w3.org/1998/Math/MathML\" display=\"inline\"><uc:mi>P</uc:mi></uc:math>-wave <wc:math xmlns:wc=\"http://www.w3.org/1998/Math/MathML\" display=\"inline\"><wc:mi>D</wc:mi><wc:msup><wc:mover accent=\"true\"><wc:mi>D</wc:mi><wc:mo stretchy=\"false\">¯</wc:mo></wc:mover><wc:mo>*</wc:mo></wc:msup><wc:mo>/</wc:mo><wc:mover accent=\"true\"><wc:mi>D</wc:mi><wc:mo stretchy=\"false\">¯</wc:mo></wc:mover><wc:msup><wc:mi>D</wc:mi><wc:mo>*</wc:mo></wc:msup></wc:math> state with <cd:math xmlns:cd=\"http://www.w3.org/1998/Math/MathML\" display=\"inline\"><cd:msup><cd:mi>I</cd:mi><cd:mi>G</cd:mi></cd:msup><cd:mo stretchy=\"false\">(</cd:mo><cd:msup><cd:mi>J</cd:mi><cd:mrow><cd:mi>P</cd:mi><cd:mi>C</cd:mi></cd:mrow></cd:msup><cd:mo stretchy=\"false\">)</cd:mo><cd:mo>=</cd:mo><cd:msup><cd:mn>0</cd:mn><cd:mo>+</cd:mo></cd:msup><cd:mo stretchy=\"false\">(</cd:mo><cd:msup><cd:mn>0</cd:mn><cd:mrow><cd:mo>−</cd:mo><cd:mo>+</cd:mo></cd:mrow></cd:msup><cd:mo stretchy=\"false\">)</cd:mo></cd:math>, and <id:math xmlns: display=\"inline\"><id:mi>P</id:mi></id:math>-wave <kd:math xmlns:kd=\"http://www.w3.org/1998/Math/MathML\" display=\"inline\"><kd:mi>D</kd:mi><kd:msup><kd:mi>D</kd:mi><kd:mo>*</kd:mo></kd:msup></kd:math> state with <md:math xmlns:md=\"http://www.w3.org/1998/Math/MathML\" display=\"inline\"><md:mi>I</md:mi><md:mo stretchy=\"false\">(</md:mo><md:msup><md:mi>J</md:mi><md:mi>P</md:mi></md:msup><md:mo stretchy=\"false\">)</md:mo><md:mo>=</md:mo><md:mn>0</md:mn><md:mo stretchy=\"false\">(</md:mo><md:msup><md:mn>0</md:mn><md:mo>−</md:mo></md:msup><md:mo stretchy=\"false\">)</md:mo></md:math> are more likely to be observed in experiments. <jats:supplementary-material> <jats:copyright-statement>Published by the American Physical Society</jats:copyright-statement> <jats:copyright-year>2024</jats:copyright-year> </jats:permissions> </jats:supplementary-material>","PeriodicalId":20069,"journal":{"name":"Physical review letters","volume":"51 1","pages":""},"PeriodicalIF":8.1000,"publicationDate":"2024-12-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Identification of the G(3900) Structure as the P -Wave DD¯*/D¯D* Resonance\",\"authors\":\"Zi-Yang Lin, Jun-Zhang Wang, Jian-Bo Cheng, Lu Meng, Shi-Lin Zhu\",\"doi\":\"10.1103/physrevlett.133.241903\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The BESIII Collaboration recently performed a precise measurement of the e</a:mi>+</a:mo></a:msup>e</a:mi>−</a:mo></a:msup>→</a:mo>D</a:mi>D</a:mi>¯</a:mo></a:mover></a:math> Born cross sections, and confirmed the <f:math xmlns:f=\\\"http://www.w3.org/1998/Math/MathML\\\" display=\\\"inline\\\"><f:mi>G</f:mi><f:mo stretchy=\\\"false\\\">(</f:mo><f:mn>3900</f:mn><f:mo stretchy=\\\"false\\\">)</f:mo></f:math> structure reported by and Belle with high significance. We identify the <j:math xmlns:j=\\\"http://www.w3.org/1998/Math/MathML\\\" display=\\\"inline\\\"><j:mi>G</j:mi><j:mo stretchy=\\\"false\\\">(</j:mo><j:mn>3900</j:mn><j:mo stretchy=\\\"false\\\">)</j:mo></j:math> as the first <n:math xmlns:n=\\\"http://www.w3.org/1998/Math/MathML\\\" display=\\\"inline\\\"><n:mi>P</n:mi></n:math>-wave <p:math xmlns:p=\\\"http://www.w3.org/1998/Math/MathML\\\" display=\\\"inline\\\"><p:mi>D</p:mi><p:msup><p:mover accent=\\\"true\\\"><p:mi>D</p:mi><p:mo stretchy=\\\"false\\\">¯</p:mo></p:mover><p:mo>*</p:mo></p:msup><p:mo>/</p:mo><p:mover accent=\\\"true\\\"><p:mi>D</p:mi><p:mo stretchy=\\\"false\\\">¯</p:mo></p:mover><p:msup><p:mi>D</p:mi><p:mo>*</p:mo></p:msup></p:math> molecular resonance. The experimental and theoretical identification of the <v:math xmlns:v=\\\"http://www.w3.org/1998/Math/MathML\\\" display=\\\"inline\\\"><v:mi>P</v:mi></v:math>-wave dimeson state holds paramount importance in enhancing our comprehension of the nonperturbative QCD and few-body physics. Its existence is firmly established in a unified meson-exchange model that simultaneously depicts the features of the <x:math xmlns:x=\\\"http://www.w3.org/1998/Math/MathML\\\" display=\\\"inline\\\"><x:msub><x:mi>χ</x:mi><x:mrow><x:mi>c</x:mi><x:mn>1</x:mn></x:mrow></x:msub><x:mo stretchy=\\\"false\\\">(</x:mo><x:mn>3872</x:mn><x:mo stretchy=\\\"false\\\">)</x:mo></x:math>, <bb:math xmlns:bb=\\\"http://www.w3.org/1998/Math/MathML\\\" display=\\\"inline\\\"><bb:msub><bb:mi>Z</bb:mi><bb:mi>c</bb:mi></bb:msub><bb:mo stretchy=\\\"false\\\">(</bb:mo><bb:mn>3900</bb:mn><bb:mo stretchy=\\\"false\\\">)</bb:mo></bb:math>, and <fb:math xmlns:fb=\\\"http://www.w3.org/1998/Math/MathML\\\" display=\\\"inline\\\"><fb:msub><fb:mi>T</fb:mi><fb:mrow><fb:mi>c</fb:mi><fb:mi>c</fb:mi></fb:mrow></fb:msub><fb:mo stretchy=\\\"false\\\">(</fb:mo><fb:mn>3875</fb:mn><fb:mo stretchy=\\\"false\\\">)</fb:mo></fb:math>. This scenario can be directly examined in the <jb:math xmlns:jb=\\\"http://www.w3.org/1998/Math/MathML\\\" display=\\\"inline\\\"><jb:msup><jb:mi>e</jb:mi><jb:mo>+</jb:mo></jb:msup><jb:msup><jb:mi>e</jb:mi><jb:mo>−</jb:mo></jb:msup><jb:mo stretchy=\\\"false\\\">→</jb:mo><jb:mi>D</jb:mi><jb:msup><jb:mover accent=\\\"true\\\"><jb:mi>D</jb:mi><jb:mo stretchy=\\\"false\\\">¯</jb:mo></jb:mover><jb:mo>*</jb:mo></jb:msup><jb:mo>/</jb:mo><jb:mover accent=\\\"true\\\"><jb:mi>D</jb:mi><jb:mo stretchy=\\\"false\\\">¯</jb:mo></jb:mover><jb:msup><jb:mi>D</jb:mi><jb:mo>*</jb:mo></jb:msup></jb:math> cross section by seeing whether a resonance exists at the threshold. The credibility of the investigations is also ensured by the fact that the <qb:math xmlns:qb=\\\"http://www.w3.org/1998/Math/MathML\\\" display=\\\"inline\\\"><qb:mi>P</qb:mi></qb:math>-wave interaction dominantly arises from the well-known long-range pion exchange. Additionally, thanks to the centrifugal barrier, it is easier to form resonances in <sb:math xmlns:sb=\\\"http://www.w3.org/1998/Math/MathML\\\" display=\\\"inline\\\"><sb:mi>P</sb:mi></sb:math>-wave than in <ub:math xmlns:ub=\\\"http://www.w3.org/1998/Math/MathML\\\" display=\\\"inline\\\"><ub:mi>S</ub:mi></ub:math>-wave. We extensively calculate all systems up to <wb:math xmlns:wb=\\\"http://www.w3.org/1998/Math/MathML\\\" display=\\\"inline\\\"><wb:mi>P</wb:mi></wb:math>-wave with various quantum numbers and predict a dense population of the <yb:math xmlns:yb=\\\"http://www.w3.org/1998/Math/MathML\\\" display=\\\"inline\\\"><yb:mi>D</yb:mi><yb:msup><yb:mover accent=\\\"true\\\"><yb:mi>D</yb:mi><yb:mo stretchy=\\\"false\\\">¯</yb:mo></yb:mover><yb:mo>*</yb:mo></yb:msup><yb:mo>/</yb:mo><yb:mover accent=\\\"true\\\"><yb:mi>D</yb:mi><yb:mo stretchy=\\\"false\\\">¯</yb:mo></yb:mover><yb:msup><yb:mi>D</yb:mi><yb:mo>*</yb:mo></yb:msup></yb:math> and <ec:math xmlns:ec=\\\"http://www.w3.org/1998/Math/MathML\\\" display=\\\"inline\\\"><ec:mi>D</ec:mi><ec:msup><ec:mi>D</ec:mi><ec:mo>*</ec:mo></ec:msup></ec:math> states, where the <gc:math xmlns:gc=\\\"http://www.w3.org/1998/Math/MathML\\\" display=\\\"inline\\\"><gc:mi>S</gc:mi></gc:math>-wave <ic:math xmlns:ic=\\\"http://www.w3.org/1998/Math/MathML\\\" display=\\\"inline\\\"><ic:mi>D</ic:mi><ic:msup><ic:mover accent=\\\"true\\\"><ic:mi>D</ic:mi><ic:mo stretchy=\\\"false\\\">¯</ic:mo></ic:mover><ic:mo>*</ic:mo></ic:msup><ic:mo>/</ic:mo><ic:mover accent=\\\"true\\\"><ic:mi>D</ic:mi><ic:mo stretchy=\\\"false\\\">¯</ic:mo></ic:mover><ic:msup><ic:mi>D</ic:mi><ic:mo>*</ic:mo></ic:msup></ic:math> state with <oc:math xmlns:oc=\\\"http://www.w3.org/1998/Math/MathML\\\" display=\\\"inline\\\"><oc:msup><oc:mi>I</oc:mi><oc:mi>G</oc:mi></oc:msup><oc:mo stretchy=\\\"false\\\">(</oc:mo><oc:msup><oc:mi>J</oc:mi><oc:mrow><oc:mi>P</oc:mi><oc:mi>C</oc:mi></oc:mrow></oc:msup><oc:mo stretchy=\\\"false\\\">)</oc:mo><oc:mo>=</oc:mo><oc:msup><oc:mn>0</oc:mn><oc:mo>−</oc:mo></oc:msup><oc:mo stretchy=\\\"false\\\">(</oc:mo><oc:msup><oc:mn>1</oc:mn><oc:mrow><oc:mo>+</oc:mo><oc:mo>−</oc:mo></oc:mrow></oc:msup><oc:mo stretchy=\\\"false\\\">)</oc:mo></oc:math>, <uc:math xmlns:uc=\\\"http://www.w3.org/1998/Math/MathML\\\" display=\\\"inline\\\"><uc:mi>P</uc:mi></uc:math>-wave <wc:math xmlns:wc=\\\"http://www.w3.org/1998/Math/MathML\\\" display=\\\"inline\\\"><wc:mi>D</wc:mi><wc:msup><wc:mover accent=\\\"true\\\"><wc:mi>D</wc:mi><wc:mo stretchy=\\\"false\\\">¯</wc:mo></wc:mover><wc:mo>*</wc:mo></wc:msup><wc:mo>/</wc:mo><wc:mover accent=\\\"true\\\"><wc:mi>D</wc:mi><wc:mo stretchy=\\\"false\\\">¯</wc:mo></wc:mover><wc:msup><wc:mi>D</wc:mi><wc:mo>*</wc:mo></wc:msup></wc:math> state with <cd:math xmlns:cd=\\\"http://www.w3.org/1998/Math/MathML\\\" display=\\\"inline\\\"><cd:msup><cd:mi>I</cd:mi><cd:mi>G</cd:mi></cd:msup><cd:mo stretchy=\\\"false\\\">(</cd:mo><cd:msup><cd:mi>J</cd:mi><cd:mrow><cd:mi>P</cd:mi><cd:mi>C</cd:mi></cd:mrow></cd:msup><cd:mo stretchy=\\\"false\\\">)</cd:mo><cd:mo>=</cd:mo><cd:msup><cd:mn>0</cd:mn><cd:mo>+</cd:mo></cd:msup><cd:mo stretchy=\\\"false\\\">(</cd:mo><cd:msup><cd:mn>0</cd:mn><cd:mrow><cd:mo>−</cd:mo><cd:mo>+</cd:mo></cd:mrow></cd:msup><cd:mo stretchy=\\\"false\\\">)</cd:mo></cd:math>, and <id:math xmlns: display=\\\"inline\\\"><id:mi>P</id:mi></id:math>-wave <kd:math xmlns:kd=\\\"http://www.w3.org/1998/Math/MathML\\\" display=\\\"inline\\\"><kd:mi>D</kd:mi><kd:msup><kd:mi>D</kd:mi><kd:mo>*</kd:mo></kd:msup></kd:math> state with <md:math xmlns:md=\\\"http://www.w3.org/1998/Math/MathML\\\" display=\\\"inline\\\"><md:mi>I</md:mi><md:mo stretchy=\\\"false\\\">(</md:mo><md:msup><md:mi>J</md:mi><md:mi>P</md:mi></md:msup><md:mo stretchy=\\\"false\\\">)</md:mo><md:mo>=</md:mo><md:mn>0</md:mn><md:mo stretchy=\\\"false\\\">(</md:mo><md:msup><md:mn>0</md:mn><md:mo>−</md:mo></md:msup><md:mo stretchy=\\\"false\\\">)</md:mo></md:math> are more likely to be observed in experiments. <jats:supplementary-material> <jats:copyright-statement>Published by the American Physical Society</jats:copyright-statement> <jats:copyright-year>2024</jats:copyright-year> </jats:permissions> </jats:supplementary-material>\",\"PeriodicalId\":20069,\"journal\":{\"name\":\"Physical review letters\",\"volume\":\"51 1\",\"pages\":\"\"},\"PeriodicalIF\":8.1000,\"publicationDate\":\"2024-12-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Physical review letters\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://doi.org/10.1103/physrevlett.133.241903\",\"RegionNum\":1,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"PHYSICS, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Physical review letters","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1103/physrevlett.133.241903","RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PHYSICS, MULTIDISCIPLINARY","Score":null,"Total":0}
Identification of the G(3900) Structure as the P -Wave DD¯*/D¯D* Resonance
The BESIII Collaboration recently performed a precise measurement of the e+e−→DD¯ Born cross sections, and confirmed the G(3900) structure reported by and Belle with high significance. We identify the G(3900) as the first P-wave DD¯*/D¯D* molecular resonance. The experimental and theoretical identification of the P-wave dimeson state holds paramount importance in enhancing our comprehension of the nonperturbative QCD and few-body physics. Its existence is firmly established in a unified meson-exchange model that simultaneously depicts the features of the χc1(3872), Zc(3900), and Tcc(3875). This scenario can be directly examined in the e+e−→DD¯*/D¯D* cross section by seeing whether a resonance exists at the threshold. The credibility of the investigations is also ensured by the fact that the P-wave interaction dominantly arises from the well-known long-range pion exchange. Additionally, thanks to the centrifugal barrier, it is easier to form resonances in P-wave than in S-wave. We extensively calculate all systems up to P-wave with various quantum numbers and predict a dense population of the DD¯*/D¯D* and DD* states, where the S-wave DD¯*/D¯D* state with IG(JPC)=0−(1+−), P-wave DD¯*/D¯D* state with IG(JPC)=0+(0−+), and P-wave DD* state with I(JP)=0(0−) are more likely to be observed in experiments. Published by the American Physical Society2024
期刊介绍:
Physical review letters(PRL)covers the full range of applied, fundamental, and interdisciplinary physics research topics:
General physics, including statistical and quantum mechanics and quantum information
Gravitation, astrophysics, and cosmology
Elementary particles and fields
Nuclear physics
Atomic, molecular, and optical physics
Nonlinear dynamics, fluid dynamics, and classical optics
Plasma and beam physics
Condensed matter and materials physics
Polymers, soft matter, biological, climate and interdisciplinary physics, including networks