Morteza Torabi, Meysam Yarie, AmirMahdi Tavassoli, Narges Zarei, Leila Vatannavaz, Mohammad Ali Zolfigol, Saeid Azizian, Sadegh Khazalpour
{"title":"Heterocyclic-linked covalent organic frameworks: Design, synthesis and applications","authors":"Morteza Torabi, Meysam Yarie, AmirMahdi Tavassoli, Narges Zarei, Leila Vatannavaz, Mohammad Ali Zolfigol, Saeid Azizian, Sadegh Khazalpour","doi":"10.1016/j.ccr.2024.216359","DOIUrl":null,"url":null,"abstract":"Covalent organic frameworks (COFs), a growing category of crystalline-structured porous organic compounds, have found an influential position in reticular chemistry. In comparison with solo-bond formed COFs, heterocyclic-linked COFs have benefited from advanced linkages which give them new top-level standards such as superb complexity combined with adjustability, improved framework robustness, excellent structural periodicity and regularity, hydrogen bonding potentiality, functional diversity, exceptional porosity and crystallinity, post-synthetic modification capability, prominent thermal and chemical stability, and proper specific surface area. Due to these outstanding merits, a diverse range of performances in catalysis and photocatalysis processes, sensing materials, separation processes, gas and energy storage and conversion, optoelectronic devices, CO<sub>2</sub> photoreduction, environmental and contaminant remediation and drug delivery have been reported for them. Herein, we exclusively focussed on the design, synthesis, and application of COFs featuring heterocyclic linkages (such as benzoxazole, chromenoquinoline, dioxane, imidazole, imide, oxadiazole, pyrazine, quinoline, thiazole, triazine, benzofuran, phthalocyanine, imidazopyridine, carbamate, thienopyridine) and their benefits and utilizations were showcased.","PeriodicalId":289,"journal":{"name":"Coordination Chemistry Reviews","volume":"22 1","pages":""},"PeriodicalIF":20.3000,"publicationDate":"2024-12-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Coordination Chemistry Reviews","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1016/j.ccr.2024.216359","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, INORGANIC & NUCLEAR","Score":null,"Total":0}
Heterocyclic-linked covalent organic frameworks: Design, synthesis and applications
Covalent organic frameworks (COFs), a growing category of crystalline-structured porous organic compounds, have found an influential position in reticular chemistry. In comparison with solo-bond formed COFs, heterocyclic-linked COFs have benefited from advanced linkages which give them new top-level standards such as superb complexity combined with adjustability, improved framework robustness, excellent structural periodicity and regularity, hydrogen bonding potentiality, functional diversity, exceptional porosity and crystallinity, post-synthetic modification capability, prominent thermal and chemical stability, and proper specific surface area. Due to these outstanding merits, a diverse range of performances in catalysis and photocatalysis processes, sensing materials, separation processes, gas and energy storage and conversion, optoelectronic devices, CO2 photoreduction, environmental and contaminant remediation and drug delivery have been reported for them. Herein, we exclusively focussed on the design, synthesis, and application of COFs featuring heterocyclic linkages (such as benzoxazole, chromenoquinoline, dioxane, imidazole, imide, oxadiazole, pyrazine, quinoline, thiazole, triazine, benzofuran, phthalocyanine, imidazopyridine, carbamate, thienopyridine) and their benefits and utilizations were showcased.
期刊介绍:
Coordination Chemistry Reviews offers rapid publication of review articles on current and significant topics in coordination chemistry, encompassing organometallic, supramolecular, theoretical, and bioinorganic chemistry. It also covers catalysis, materials chemistry, and metal-organic frameworks from a coordination chemistry perspective. Reviews summarize recent developments or discuss specific techniques, welcoming contributions from both established and emerging researchers.
The journal releases special issues on timely subjects, including those featuring contributions from specific regions or conferences. Occasional full-length book articles are also featured. Additionally, special volumes cover annual reviews of main group chemistry, transition metal group chemistry, and organometallic chemistry. These comprehensive reviews are vital resources for those engaged in coordination chemistry, further establishing Coordination Chemistry Reviews as a hub for insightful surveys in inorganic and physical inorganic chemistry.