IF 11.7 1区 综合性期刊 Q1 MULTIDISCIPLINARY SCIENCES
Shuqing Song, Qi Liu, S. Swathilakshmi, Heng-Yu Chi, Zongyao Zhou, Ranadip Goswami, Dmitry Chernyshov, Kumar Varoon Agrawal
{"title":"High-performance H 2 /CO 2 separation from 4-nm-thick oriented Zn 2 (benzimidazole) 4 films","authors":"Shuqing Song, Qi Liu, S. Swathilakshmi, Heng-Yu Chi, Zongyao Zhou, Ranadip Goswami, Dmitry Chernyshov, Kumar Varoon Agrawal","doi":"10.1126/sciadv.ads6315","DOIUrl":null,"url":null,"abstract":"High-performance membrane-based H <jats:sub>2</jats:sub> /CO <jats:sub>2</jats:sub> separation offers a promising way to reduce the energy costs of precombustion capture. Current membranes, often made from two-dimensional laminates like metal-organic frameworks, have limitations due to complex fabrication methods requiring high temperatures, organic solvents, and long synthesis time. These processes often result in poor H <jats:sub>2</jats:sub> /CO <jats:sub>2</jats:sub> selectivity under pressurized conditions due to defective transport pathways. Here, we introduce a simple, eco-friendly synthesis of ultrathin, intergrown Zn <jats:sub>2</jats:sub> (benzimidazole) <jats:sub>4</jats:sub> films, as thin as 4 nm. These films are prepared at room temperature using water as the solvent, with a synthesis time of just 10 minutes. By using ultradilute precursor solutions, nucleation is delayed, promoting rapid in-plane growth on a smooth graphene substrate and eliminating defects. These membranes exhibit excellent H <jats:sub>2</jats:sub> permselectivity under pressurized conditions. The combination of rapid, green synthesis and high-performance separation makes these membranes highly attractive for precombustion applications.","PeriodicalId":21609,"journal":{"name":"Science Advances","volume":"8 1","pages":""},"PeriodicalIF":11.7000,"publicationDate":"2024-12-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Science Advances","FirstCategoryId":"103","ListUrlMain":"https://doi.org/10.1126/sciadv.ads6315","RegionNum":1,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
引用次数: 0

摘要

基于高性能膜的 H 2 /CO 2 分离为降低燃烧前捕获的能源成本提供了一种可行的方法。目前的膜通常由金属有机框架等二维层压材料制成,由于制造方法复杂,需要高温、有机溶剂和较长的合成时间,因此存在局限性。在加压条件下,由于传输途径存在缺陷,这些工艺通常会导致 H 2 /CO 2 选择性较差。在这里,我们介绍了一种简单、环保的超薄间生 Zn 2 (benzimidazole) 4 薄膜合成方法,其厚度仅为 4 纳米。这些薄膜以水为溶剂在室温下制备,合成时间仅需 10 分钟。通过使用超稀释前驱体溶液,成核过程被延迟,从而促进了在光滑石墨烯基底上的快速面内生长,并消除了缺陷。这些膜在加压条件下表现出优异的 H 2 过选择性。快速、绿色合成与高性能分离的结合使这些膜在预燃烧应用中极具吸引力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
High-performance H 2 /CO 2 separation from 4-nm-thick oriented Zn 2 (benzimidazole) 4 films
High-performance membrane-based H 2 /CO 2 separation offers a promising way to reduce the energy costs of precombustion capture. Current membranes, often made from two-dimensional laminates like metal-organic frameworks, have limitations due to complex fabrication methods requiring high temperatures, organic solvents, and long synthesis time. These processes often result in poor H 2 /CO 2 selectivity under pressurized conditions due to defective transport pathways. Here, we introduce a simple, eco-friendly synthesis of ultrathin, intergrown Zn 2 (benzimidazole) 4 films, as thin as 4 nm. These films are prepared at room temperature using water as the solvent, with a synthesis time of just 10 minutes. By using ultradilute precursor solutions, nucleation is delayed, promoting rapid in-plane growth on a smooth graphene substrate and eliminating defects. These membranes exhibit excellent H 2 permselectivity under pressurized conditions. The combination of rapid, green synthesis and high-performance separation makes these membranes highly attractive for precombustion applications.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Science Advances
Science Advances 综合性期刊-综合性期刊
CiteScore
21.40
自引率
1.50%
发文量
1937
审稿时长
29 weeks
期刊介绍: Science Advances, an open-access journal by AAAS, publishes impactful research in diverse scientific areas. It aims for fair, fast, and expert peer review, providing freely accessible research to readers. Led by distinguished scientists, the journal supports AAAS's mission by extending Science magazine's capacity to identify and promote significant advances. Evolving digital publishing technologies play a crucial role in advancing AAAS's global mission for science communication and benefitting humankind.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信