用遗传算法参数化模拟多室神经元。

Open research Europe Pub Date : 2024-11-14 eCollection Date: 2023-01-01 DOI:10.12688/openreseurope.15775.2
Raphael Stock, Jakob Kaiser, Eric Müller, Johannes Schemmel, Sebastian Schmitt
{"title":"用遗传算法参数化模拟多室神经元。","authors":"Raphael Stock, Jakob Kaiser, Eric Müller, Johannes Schemmel, Sebastian Schmitt","doi":"10.12688/openreseurope.15775.2","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>Finding appropriate model parameters for multi-compartmental neuron models can be challenging. Parameters such as the leak and axial conductance are not always directly derivable from neuron observations but are crucial for replicating desired observations. The objective of this study is to replicate the attenuation behavior of an excitatory postsynaptic potential (EPSP) traveling along a linear chain of compartments on the analog BrainScaleS-2 neuromorphic hardware platform.</p><p><strong>Methods: </strong>In the present publication we use genetic algorithms to find suitable model parameters. They promise parameterization without domain knowledge of the neuromorphic substrate or underlying neuron model. To validate the results of the genetic algorithms, a comprehensive grid search was conducted. Furthermore, trial-to-trial variations in the analog system are counteracted utilizing spike-triggered averaging.</p><p><strong>Results and conclusions: </strong>The algorithm successfully replicated the desired EPSP attenuation behavior in both single and multi-objective searches illustrating the applicability of genetic algorithms to parameterize analog neuromorphic hardware.</p>","PeriodicalId":74359,"journal":{"name":"Open research Europe","volume":"3 ","pages":"144"},"PeriodicalIF":0.0000,"publicationDate":"2024-11-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11635192/pdf/","citationCount":"0","resultStr":"{\"title\":\"Parametrizing analog multi-compartment neurons with genetic algorithms.\",\"authors\":\"Raphael Stock, Jakob Kaiser, Eric Müller, Johannes Schemmel, Sebastian Schmitt\",\"doi\":\"10.12688/openreseurope.15775.2\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Background: </strong>Finding appropriate model parameters for multi-compartmental neuron models can be challenging. Parameters such as the leak and axial conductance are not always directly derivable from neuron observations but are crucial for replicating desired observations. The objective of this study is to replicate the attenuation behavior of an excitatory postsynaptic potential (EPSP) traveling along a linear chain of compartments on the analog BrainScaleS-2 neuromorphic hardware platform.</p><p><strong>Methods: </strong>In the present publication we use genetic algorithms to find suitable model parameters. They promise parameterization without domain knowledge of the neuromorphic substrate or underlying neuron model. To validate the results of the genetic algorithms, a comprehensive grid search was conducted. Furthermore, trial-to-trial variations in the analog system are counteracted utilizing spike-triggered averaging.</p><p><strong>Results and conclusions: </strong>The algorithm successfully replicated the desired EPSP attenuation behavior in both single and multi-objective searches illustrating the applicability of genetic algorithms to parameterize analog neuromorphic hardware.</p>\",\"PeriodicalId\":74359,\"journal\":{\"name\":\"Open research Europe\",\"volume\":\"3 \",\"pages\":\"144\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-11-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11635192/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Open research Europe\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.12688/openreseurope.15775.2\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2023/1/1 0:00:00\",\"PubModel\":\"eCollection\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Open research Europe","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.12688/openreseurope.15775.2","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2023/1/1 0:00:00","PubModel":"eCollection","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

背景:为多室神经元模型寻找合适的模型参数是具有挑战性的。诸如泄漏和轴向电导等参数并不总是直接从神经元观察中得出,但对于复制所需的观察结果至关重要。本研究的目的是复制兴奋性突触后电位(EPSP)在模拟brainscale -2神经形态硬件平台上沿线性隔室链行进的衰减行为。方法:本文采用遗传算法寻找合适的模型参数。它们承诺在没有神经形态底物或底层神经元模型的领域知识的情况下进行参数化。为了验证遗传算法的结果,进行了全面的网格搜索。此外,模拟系统中的试对试变化被利用尖峰触发的平均抵消。结果和结论:该算法在单目标和多目标搜索中都成功地复制了期望的EPSP衰减行为,说明了遗传算法在参数化模拟神经形态硬件方面的适用性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Parametrizing analog multi-compartment neurons with genetic algorithms.

Background: Finding appropriate model parameters for multi-compartmental neuron models can be challenging. Parameters such as the leak and axial conductance are not always directly derivable from neuron observations but are crucial for replicating desired observations. The objective of this study is to replicate the attenuation behavior of an excitatory postsynaptic potential (EPSP) traveling along a linear chain of compartments on the analog BrainScaleS-2 neuromorphic hardware platform.

Methods: In the present publication we use genetic algorithms to find suitable model parameters. They promise parameterization without domain knowledge of the neuromorphic substrate or underlying neuron model. To validate the results of the genetic algorithms, a comprehensive grid search was conducted. Furthermore, trial-to-trial variations in the analog system are counteracted utilizing spike-triggered averaging.

Results and conclusions: The algorithm successfully replicated the desired EPSP attenuation behavior in both single and multi-objective searches illustrating the applicability of genetic algorithms to parameterize analog neuromorphic hardware.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
1.50
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信