{"title":"理想的两亲体和蛋白酶抑制剂的关联:赋予抗菌肽在生理条件下具有稳定的抗菌活性,以对抗多重耐药细菌。","authors":"Yongjie Zhu , Bowen Li , Wanying Xu, Yuanmengxue Wang, Guoyu Li, Chongpeng Bi, Anshan Shan, Changxuan Shao","doi":"10.1016/j.drup.2024.101183","DOIUrl":null,"url":null,"abstract":"<div><h3>Aims</h3><div>The unstable antimicrobial activity of antimicrobial peptides (AMPs) under physiological conditions (especially the degradation instigated proteases) seems to be a persistent impediment for their successful implementation in clinical trials. Consequently, our objective was to devise AMP engineering frameworks that could sustain robust antibacterial efficacy within physiological environments.</div></div><div><h3>Methods</h3><div>In this work, we harvested AMPs with stable antimicrobial activity under the physiological barriers through the combination of idealized amphiphiles and trypsin inhibitors.</div></div><div><h3>Results</h3><div>We screened and identified the lead peptides IK3-A and IK3-S, which showed potent activity against Gram-negative bacteria, including multidrug-resistant (MDR) bacteria, and exhibited promising biocompatibility with mammalian cells. Remarkably, IK3-A and IK3-S maintained sustained antibacterial potency under physiological salts, serum, and protease conditions. Furthermore, both IK3-A and IK3-S kill Gram-negative bacteria by attacking the bacterial cell membrane and inducing oxidative damage (at high concentrations). Crucially, IK3-A and IK3-S have optimal safety and efficacy in mice.</div></div><div><h3>Conclusions</h3><div>This is the first work to compare the effects of different trypsin inhibitors on the resistance of AMPs to protease hydrolysis on the same sequence platform. In conclusion, these findings provide guidance for the molecular design of AMPs with stable antibacterial activity under physiological conditions and facilitates the process of clinical translation of AMPs as antimicrobial biomaterials against MDR bacteria. Moreover, this may stimulate a more general interest in protease inhibitors as molecular scaffolds in the creation of highly stable peptide-based biomaterials.</div></div>","PeriodicalId":51022,"journal":{"name":"Drug Resistance Updates","volume":"79 ","pages":"Article 101183"},"PeriodicalIF":15.8000,"publicationDate":"2024-12-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Association of idealized amphiphiles and protease inhibitors: Conferring antimicrobial peptides with stable antibacterial activity under physiological conditions to combat multidrug-resistant bacteria\",\"authors\":\"Yongjie Zhu , Bowen Li , Wanying Xu, Yuanmengxue Wang, Guoyu Li, Chongpeng Bi, Anshan Shan, Changxuan Shao\",\"doi\":\"10.1016/j.drup.2024.101183\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><h3>Aims</h3><div>The unstable antimicrobial activity of antimicrobial peptides (AMPs) under physiological conditions (especially the degradation instigated proteases) seems to be a persistent impediment for their successful implementation in clinical trials. Consequently, our objective was to devise AMP engineering frameworks that could sustain robust antibacterial efficacy within physiological environments.</div></div><div><h3>Methods</h3><div>In this work, we harvested AMPs with stable antimicrobial activity under the physiological barriers through the combination of idealized amphiphiles and trypsin inhibitors.</div></div><div><h3>Results</h3><div>We screened and identified the lead peptides IK3-A and IK3-S, which showed potent activity against Gram-negative bacteria, including multidrug-resistant (MDR) bacteria, and exhibited promising biocompatibility with mammalian cells. Remarkably, IK3-A and IK3-S maintained sustained antibacterial potency under physiological salts, serum, and protease conditions. Furthermore, both IK3-A and IK3-S kill Gram-negative bacteria by attacking the bacterial cell membrane and inducing oxidative damage (at high concentrations). Crucially, IK3-A and IK3-S have optimal safety and efficacy in mice.</div></div><div><h3>Conclusions</h3><div>This is the first work to compare the effects of different trypsin inhibitors on the resistance of AMPs to protease hydrolysis on the same sequence platform. In conclusion, these findings provide guidance for the molecular design of AMPs with stable antibacterial activity under physiological conditions and facilitates the process of clinical translation of AMPs as antimicrobial biomaterials against MDR bacteria. Moreover, this may stimulate a more general interest in protease inhibitors as molecular scaffolds in the creation of highly stable peptide-based biomaterials.</div></div>\",\"PeriodicalId\":51022,\"journal\":{\"name\":\"Drug Resistance Updates\",\"volume\":\"79 \",\"pages\":\"Article 101183\"},\"PeriodicalIF\":15.8000,\"publicationDate\":\"2024-12-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Drug Resistance Updates\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1368764624001419\",\"RegionNum\":1,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"PHARMACOLOGY & PHARMACY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Drug Resistance Updates","FirstCategoryId":"3","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1368764624001419","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PHARMACOLOGY & PHARMACY","Score":null,"Total":0}
Association of idealized amphiphiles and protease inhibitors: Conferring antimicrobial peptides with stable antibacterial activity under physiological conditions to combat multidrug-resistant bacteria
Aims
The unstable antimicrobial activity of antimicrobial peptides (AMPs) under physiological conditions (especially the degradation instigated proteases) seems to be a persistent impediment for their successful implementation in clinical trials. Consequently, our objective was to devise AMP engineering frameworks that could sustain robust antibacterial efficacy within physiological environments.
Methods
In this work, we harvested AMPs with stable antimicrobial activity under the physiological barriers through the combination of idealized amphiphiles and trypsin inhibitors.
Results
We screened and identified the lead peptides IK3-A and IK3-S, which showed potent activity against Gram-negative bacteria, including multidrug-resistant (MDR) bacteria, and exhibited promising biocompatibility with mammalian cells. Remarkably, IK3-A and IK3-S maintained sustained antibacterial potency under physiological salts, serum, and protease conditions. Furthermore, both IK3-A and IK3-S kill Gram-negative bacteria by attacking the bacterial cell membrane and inducing oxidative damage (at high concentrations). Crucially, IK3-A and IK3-S have optimal safety and efficacy in mice.
Conclusions
This is the first work to compare the effects of different trypsin inhibitors on the resistance of AMPs to protease hydrolysis on the same sequence platform. In conclusion, these findings provide guidance for the molecular design of AMPs with stable antibacterial activity under physiological conditions and facilitates the process of clinical translation of AMPs as antimicrobial biomaterials against MDR bacteria. Moreover, this may stimulate a more general interest in protease inhibitors as molecular scaffolds in the creation of highly stable peptide-based biomaterials.
期刊介绍:
Drug Resistance Updates serves as a platform for publishing original research, commentary, and expert reviews on significant advancements in drug resistance related to infectious diseases and cancer. It encompasses diverse disciplines such as molecular biology, biochemistry, cell biology, pharmacology, microbiology, preclinical therapeutics, oncology, and clinical medicine. The journal addresses both basic research and clinical aspects of drug resistance, providing insights into novel drugs and strategies to overcome resistance. Original research articles are welcomed, and review articles are authored by leaders in the field by invitation.
Articles are written by leaders in the field, in response to an invitation from the Editors, and are peer-reviewed prior to publication. Articles are clear, readable, and up-to-date, suitable for a multidisciplinary readership and include schematic diagrams and other illustrations conveying the major points of the article. The goal is to highlight recent areas of growth and put them in perspective.
*Expert reviews in clinical and basic drug resistance research in oncology and infectious disease
*Describes emerging technologies and therapies, particularly those that overcome drug resistance
*Emphasises common themes in microbial and cancer research