Christopher E Niemczak, James C Ford, Robert M Roth, Samantha M Leigh, Jeffrey Parsonnet, Christina Martin, Shreve O Soule, Theresa M Haron, Jay C Buckey, Glenn R Wylie
{"title":"SARS-CoV-2感染急性后后遗症患者认知疲劳的神经影像学标志物","authors":"Christopher E Niemczak, James C Ford, Robert M Roth, Samantha M Leigh, Jeffrey Parsonnet, Christina Martin, Shreve O Soule, Theresa M Haron, Jay C Buckey, Glenn R Wylie","doi":"10.1016/j.bandc.2024.106254","DOIUrl":null,"url":null,"abstract":"<p><p>Persistent cognitive fatigue (CF) is the most reported symptom in Post-Acute Sequelae of SARS-CoV-2 Infection (PASC), but little is known about its underlying neural basis. This pilot study examined fMRI brain activation patterns during a fatiguing task in those with and without PASC. We hypothesized that individuals with PASC would show changes in CF-related brain activation within fatigue network. Participants were 10 adults with PASC and persistent CF and 10 age- and gender-matched healthy controls. The 2-back working memory task was used during fMRI to induce CF. Patients with PASC reported greater CF, as measured using a Visual Analogue Scale of Fatigue (VAS-F), throughout the task. The relationship of brain activation in the fatigue network to increased CF during the fatiguing task did not differ between groups. There were, however, more areas inside and outside the fatigue network that were activated in the PASC group as reported CF increased. The relationship between brain activation and scores on the 2-back did differ between groups, with the PASC group showing more frontal activation. Findings suggest that individuals with PASC and CF may need to exert greater mental effort during demanding cognitive tasks, reflected in recruitment of a broader network of brain regions.</p>","PeriodicalId":55331,"journal":{"name":"Brain and Cognition","volume":"183 ","pages":"106254"},"PeriodicalIF":2.2000,"publicationDate":"2025-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Neuroimaging markers of cognitive fatigue in individuals with post-acute sequelae of SARS-CoV-2 infection.\",\"authors\":\"Christopher E Niemczak, James C Ford, Robert M Roth, Samantha M Leigh, Jeffrey Parsonnet, Christina Martin, Shreve O Soule, Theresa M Haron, Jay C Buckey, Glenn R Wylie\",\"doi\":\"10.1016/j.bandc.2024.106254\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Persistent cognitive fatigue (CF) is the most reported symptom in Post-Acute Sequelae of SARS-CoV-2 Infection (PASC), but little is known about its underlying neural basis. This pilot study examined fMRI brain activation patterns during a fatiguing task in those with and without PASC. We hypothesized that individuals with PASC would show changes in CF-related brain activation within fatigue network. Participants were 10 adults with PASC and persistent CF and 10 age- and gender-matched healthy controls. The 2-back working memory task was used during fMRI to induce CF. Patients with PASC reported greater CF, as measured using a Visual Analogue Scale of Fatigue (VAS-F), throughout the task. The relationship of brain activation in the fatigue network to increased CF during the fatiguing task did not differ between groups. There were, however, more areas inside and outside the fatigue network that were activated in the PASC group as reported CF increased. The relationship between brain activation and scores on the 2-back did differ between groups, with the PASC group showing more frontal activation. Findings suggest that individuals with PASC and CF may need to exert greater mental effort during demanding cognitive tasks, reflected in recruitment of a broader network of brain regions.</p>\",\"PeriodicalId\":55331,\"journal\":{\"name\":\"Brain and Cognition\",\"volume\":\"183 \",\"pages\":\"106254\"},\"PeriodicalIF\":2.2000,\"publicationDate\":\"2025-02-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Brain and Cognition\",\"FirstCategoryId\":\"102\",\"ListUrlMain\":\"https://doi.org/10.1016/j.bandc.2024.106254\",\"RegionNum\":3,\"RegionCategory\":\"心理学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2024/12/12 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q3\",\"JCRName\":\"NEUROSCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Brain and Cognition","FirstCategoryId":"102","ListUrlMain":"https://doi.org/10.1016/j.bandc.2024.106254","RegionNum":3,"RegionCategory":"心理学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/12/12 0:00:00","PubModel":"Epub","JCR":"Q3","JCRName":"NEUROSCIENCES","Score":null,"Total":0}
Neuroimaging markers of cognitive fatigue in individuals with post-acute sequelae of SARS-CoV-2 infection.
Persistent cognitive fatigue (CF) is the most reported symptom in Post-Acute Sequelae of SARS-CoV-2 Infection (PASC), but little is known about its underlying neural basis. This pilot study examined fMRI brain activation patterns during a fatiguing task in those with and without PASC. We hypothesized that individuals with PASC would show changes in CF-related brain activation within fatigue network. Participants were 10 adults with PASC and persistent CF and 10 age- and gender-matched healthy controls. The 2-back working memory task was used during fMRI to induce CF. Patients with PASC reported greater CF, as measured using a Visual Analogue Scale of Fatigue (VAS-F), throughout the task. The relationship of brain activation in the fatigue network to increased CF during the fatiguing task did not differ between groups. There were, however, more areas inside and outside the fatigue network that were activated in the PASC group as reported CF increased. The relationship between brain activation and scores on the 2-back did differ between groups, with the PASC group showing more frontal activation. Findings suggest that individuals with PASC and CF may need to exert greater mental effort during demanding cognitive tasks, reflected in recruitment of a broader network of brain regions.
期刊介绍:
Brain and Cognition is a forum for the integration of the neurosciences and cognitive sciences. B&C publishes peer-reviewed research articles, theoretical papers, case histories that address important theoretical issues, and historical articles into the interaction between cognitive function and brain processes. The focus is on rigorous studies of an empirical or theoretical nature and which make an original contribution to our knowledge about the involvement of the nervous system in cognition. Coverage includes, but is not limited to memory, learning, emotion, perception, movement, music or praxis in relationship to brain structure or function. Published articles will typically address issues relating some aspect of cognitive function to its neurological substrates with clear theoretical import, formulating new hypotheses or refuting previously established hypotheses. Clinical papers are welcome if they raise issues of theoretical importance or concern and shed light on the interaction between brain function and cognitive function. We welcome review articles that clearly contribute a new perspective or integration, beyond summarizing the literature in the field; authors of review articles should make explicit where the contribution lies. We also welcome proposals for special issues on aspects of the relation between cognition and the structure and function of the nervous system. Such proposals can be made directly to the Editor-in-Chief from individuals interested in being guest editors for such collections.