{"title":"全膝关节置换术植入物设计在步态中的运动学和动力学差异。","authors":"Kohei Nishizawa , Kengo Harato , Satoshi Hakukawa , Shu Kobayashi , Yasuo Niki , Takeo Nagura","doi":"10.1016/j.clinbiomech.2024.106404","DOIUrl":null,"url":null,"abstract":"<div><h3>Background</h3><div>Implant design is important for achieving proper knee biomechanics during gait following knee arthroplasty. Bicruciate-stabilized total knee arthroplasty attempts to replicate anterior stability and rotational facilitation. However, its detailed gait biomechanics compared with other implant designs have not been analyzed. The purpose of this study is to compare knee kinematics and kinetics between bicruciate-stabilized total knee arthroplasty, posterior-stabilized total knee arthroplasty, unicompartmental knee arthroplasty, and normal knees.</div></div><div><h3>Methods</h3><div>Ten healthy subjects, 16 who underwent posterior stabilized total knee arthroplasty, 12 who underwent bicruciate-stabilized total knee arthroplasty, and 13 who underwent unicompartmental knee arthroplasty were recruited. The mean follow-up period after arthroplasty was 11.0 months. Three-dimensional kinematics and kinetics were assessed using a motion capture system with subjects walking on a 5-m walkway. Comparisons between groups were conducted using the Kruskal–Wallis test, and <em>post hoc</em> analysis was performed for those parameters that differed significantly.</div></div><div><h3>Findings</h3><div>The bicruciate-stabilized total knee arthroplasty group showed decreased internal rotation compared to the unicompartmental knee arthroplasty group. Compared to the control group, the posterior-stabilized total knee arthroplasty group exhibited reduced knee extension and internal rotation moment.</div></div><div><h3>Interpretation</h3><div>Bicruciate-stabilized total knee arthroplasties exhibited different biomechanical characteristics compared to unicompartmental knee arthroplasties during terminal stance. Postoperative total knee arthroplasty rehabilitation should focus on relieving stiffness owing to insufficient knee flexion-extension motion observed in both bicruciate-stabilized and posterior-stabilized total knee arthroplasties compared with unicompartmental knee arthroplasty, which may be due to a lack of knee rotational motion during gait.</div></div>","PeriodicalId":50992,"journal":{"name":"Clinical Biomechanics","volume":"122 ","pages":"Article 106404"},"PeriodicalIF":1.4000,"publicationDate":"2025-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Differences in kinematics and kinetics during gait between total knee arthroplasty implant designs\",\"authors\":\"Kohei Nishizawa , Kengo Harato , Satoshi Hakukawa , Shu Kobayashi , Yasuo Niki , Takeo Nagura\",\"doi\":\"10.1016/j.clinbiomech.2024.106404\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><h3>Background</h3><div>Implant design is important for achieving proper knee biomechanics during gait following knee arthroplasty. Bicruciate-stabilized total knee arthroplasty attempts to replicate anterior stability and rotational facilitation. However, its detailed gait biomechanics compared with other implant designs have not been analyzed. The purpose of this study is to compare knee kinematics and kinetics between bicruciate-stabilized total knee arthroplasty, posterior-stabilized total knee arthroplasty, unicompartmental knee arthroplasty, and normal knees.</div></div><div><h3>Methods</h3><div>Ten healthy subjects, 16 who underwent posterior stabilized total knee arthroplasty, 12 who underwent bicruciate-stabilized total knee arthroplasty, and 13 who underwent unicompartmental knee arthroplasty were recruited. The mean follow-up period after arthroplasty was 11.0 months. Three-dimensional kinematics and kinetics were assessed using a motion capture system with subjects walking on a 5-m walkway. Comparisons between groups were conducted using the Kruskal–Wallis test, and <em>post hoc</em> analysis was performed for those parameters that differed significantly.</div></div><div><h3>Findings</h3><div>The bicruciate-stabilized total knee arthroplasty group showed decreased internal rotation compared to the unicompartmental knee arthroplasty group. Compared to the control group, the posterior-stabilized total knee arthroplasty group exhibited reduced knee extension and internal rotation moment.</div></div><div><h3>Interpretation</h3><div>Bicruciate-stabilized total knee arthroplasties exhibited different biomechanical characteristics compared to unicompartmental knee arthroplasties during terminal stance. Postoperative total knee arthroplasty rehabilitation should focus on relieving stiffness owing to insufficient knee flexion-extension motion observed in both bicruciate-stabilized and posterior-stabilized total knee arthroplasties compared with unicompartmental knee arthroplasty, which may be due to a lack of knee rotational motion during gait.</div></div>\",\"PeriodicalId\":50992,\"journal\":{\"name\":\"Clinical Biomechanics\",\"volume\":\"122 \",\"pages\":\"Article 106404\"},\"PeriodicalIF\":1.4000,\"publicationDate\":\"2025-02-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Clinical Biomechanics\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0268003324002365\",\"RegionNum\":3,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"ENGINEERING, BIOMEDICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Clinical Biomechanics","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0268003324002365","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"ENGINEERING, BIOMEDICAL","Score":null,"Total":0}
Differences in kinematics and kinetics during gait between total knee arthroplasty implant designs
Background
Implant design is important for achieving proper knee biomechanics during gait following knee arthroplasty. Bicruciate-stabilized total knee arthroplasty attempts to replicate anterior stability and rotational facilitation. However, its detailed gait biomechanics compared with other implant designs have not been analyzed. The purpose of this study is to compare knee kinematics and kinetics between bicruciate-stabilized total knee arthroplasty, posterior-stabilized total knee arthroplasty, unicompartmental knee arthroplasty, and normal knees.
Methods
Ten healthy subjects, 16 who underwent posterior stabilized total knee arthroplasty, 12 who underwent bicruciate-stabilized total knee arthroplasty, and 13 who underwent unicompartmental knee arthroplasty were recruited. The mean follow-up period after arthroplasty was 11.0 months. Three-dimensional kinematics and kinetics were assessed using a motion capture system with subjects walking on a 5-m walkway. Comparisons between groups were conducted using the Kruskal–Wallis test, and post hoc analysis was performed for those parameters that differed significantly.
Findings
The bicruciate-stabilized total knee arthroplasty group showed decreased internal rotation compared to the unicompartmental knee arthroplasty group. Compared to the control group, the posterior-stabilized total knee arthroplasty group exhibited reduced knee extension and internal rotation moment.
Interpretation
Bicruciate-stabilized total knee arthroplasties exhibited different biomechanical characteristics compared to unicompartmental knee arthroplasties during terminal stance. Postoperative total knee arthroplasty rehabilitation should focus on relieving stiffness owing to insufficient knee flexion-extension motion observed in both bicruciate-stabilized and posterior-stabilized total knee arthroplasties compared with unicompartmental knee arthroplasty, which may be due to a lack of knee rotational motion during gait.
期刊介绍:
Clinical Biomechanics is an international multidisciplinary journal of biomechanics with a focus on medical and clinical applications of new knowledge in the field.
The science of biomechanics helps explain the causes of cell, tissue, organ and body system disorders, and supports clinicians in the diagnosis, prognosis and evaluation of treatment methods and technologies. Clinical Biomechanics aims to strengthen the links between laboratory and clinic by publishing cutting-edge biomechanics research which helps to explain the causes of injury and disease, and which provides evidence contributing to improved clinical management.
A rigorous peer review system is employed and every attempt is made to process and publish top-quality papers promptly.
Clinical Biomechanics explores all facets of body system, organ, tissue and cell biomechanics, with an emphasis on medical and clinical applications of the basic science aspects. The role of basic science is therefore recognized in a medical or clinical context. The readership of the journal closely reflects its multi-disciplinary contents, being a balance of scientists, engineers and clinicians.
The contents are in the form of research papers, brief reports, review papers and correspondence, whilst special interest issues and supplements are published from time to time.
Disciplines covered include biomechanics and mechanobiology at all scales, bioengineering and use of tissue engineering and biomaterials for clinical applications, biophysics, as well as biomechanical aspects of medical robotics, ergonomics, physical and occupational therapeutics and rehabilitation.