{"title":"指数同步和加密技术的进展:具有双面系数的四元数值人工神经网络","authors":"Chenyang Li, Kit Ian Kou, Yanlin Zhang, Yang Liu","doi":"10.1016/j.neunet.2024.106982","DOIUrl":null,"url":null,"abstract":"<p><p>This paper presents cutting-edge advancements in exponential synchronization and encryption techniques, focusing on Quaternion-Valued Artificial Neural Networks (QVANNs) that incorporate two-sided coefficients. The study introduces a novel approach that harnesses the Cayley-Dickson representation method to simplify the complex equations inherent in QVANNs, thereby enhancing computational efficiency by exploiting complex number properties. The study employs the Lyapunov theorem to craft a resilient control system, showcasing its exponential synchronization by skillfully regulating the Lyapunov function and its derivatives. This management ensures the stability and synchronization of the network, which is crucial for reliable performance in various applications. Extensive numerical simulations are conducted to substantiate the theoretical framework, providing empirical evidence supporting the presented design and proofs. Furthermore, the paper explores the practical application of QVANNs in the encryption and decryption of color images, showcasing the network's capability to handle complex data processing tasks efficiently. The findings of this research not only contribute significantly to the development of complex artificial neural networks but pave the way for further exploration into systems with diverse delay types.</p>","PeriodicalId":49763,"journal":{"name":"Neural Networks","volume":"183 ","pages":"106982"},"PeriodicalIF":6.0000,"publicationDate":"2024-12-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Advancements in exponential synchronization and encryption techniques: Quaternion-Valued Artificial Neural Networks with two-sided coefficients.\",\"authors\":\"Chenyang Li, Kit Ian Kou, Yanlin Zhang, Yang Liu\",\"doi\":\"10.1016/j.neunet.2024.106982\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>This paper presents cutting-edge advancements in exponential synchronization and encryption techniques, focusing on Quaternion-Valued Artificial Neural Networks (QVANNs) that incorporate two-sided coefficients. The study introduces a novel approach that harnesses the Cayley-Dickson representation method to simplify the complex equations inherent in QVANNs, thereby enhancing computational efficiency by exploiting complex number properties. The study employs the Lyapunov theorem to craft a resilient control system, showcasing its exponential synchronization by skillfully regulating the Lyapunov function and its derivatives. This management ensures the stability and synchronization of the network, which is crucial for reliable performance in various applications. Extensive numerical simulations are conducted to substantiate the theoretical framework, providing empirical evidence supporting the presented design and proofs. Furthermore, the paper explores the practical application of QVANNs in the encryption and decryption of color images, showcasing the network's capability to handle complex data processing tasks efficiently. The findings of this research not only contribute significantly to the development of complex artificial neural networks but pave the way for further exploration into systems with diverse delay types.</p>\",\"PeriodicalId\":49763,\"journal\":{\"name\":\"Neural Networks\",\"volume\":\"183 \",\"pages\":\"106982\"},\"PeriodicalIF\":6.0000,\"publicationDate\":\"2024-12-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Neural Networks\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://doi.org/10.1016/j.neunet.2024.106982\",\"RegionNum\":1,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Neural Networks","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1016/j.neunet.2024.106982","RegionNum":1,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
Advancements in exponential synchronization and encryption techniques: Quaternion-Valued Artificial Neural Networks with two-sided coefficients.
This paper presents cutting-edge advancements in exponential synchronization and encryption techniques, focusing on Quaternion-Valued Artificial Neural Networks (QVANNs) that incorporate two-sided coefficients. The study introduces a novel approach that harnesses the Cayley-Dickson representation method to simplify the complex equations inherent in QVANNs, thereby enhancing computational efficiency by exploiting complex number properties. The study employs the Lyapunov theorem to craft a resilient control system, showcasing its exponential synchronization by skillfully regulating the Lyapunov function and its derivatives. This management ensures the stability and synchronization of the network, which is crucial for reliable performance in various applications. Extensive numerical simulations are conducted to substantiate the theoretical framework, providing empirical evidence supporting the presented design and proofs. Furthermore, the paper explores the practical application of QVANNs in the encryption and decryption of color images, showcasing the network's capability to handle complex data processing tasks efficiently. The findings of this research not only contribute significantly to the development of complex artificial neural networks but pave the way for further exploration into systems with diverse delay types.
期刊介绍:
Neural Networks is a platform that aims to foster an international community of scholars and practitioners interested in neural networks, deep learning, and other approaches to artificial intelligence and machine learning. Our journal invites submissions covering various aspects of neural networks research, from computational neuroscience and cognitive modeling to mathematical analyses and engineering applications. By providing a forum for interdisciplinary discussions between biology and technology, we aim to encourage the development of biologically-inspired artificial intelligence.