{"title":"使用自由呼吸运动校正宽带黑血后期钆增强成像改善植入式心脏装置患者的心肌瘢痕可视化。","authors":"Pauline Gut, Hubert Cochet, Panagiotis Antiochos, Guido Caluori, Baptiste Durand, Marion Constantin, Konstantinos Vlachos, Kalvin Narceau, Ambra Masi, Jürg Schwitter, Frederic Sacher, Pierre Jaïs, Matthias Stuber, Aurélien Bustin","doi":"10.1016/j.diii.2024.12.001","DOIUrl":null,"url":null,"abstract":"<p><strong>Purpose: </strong>The purpose of this study was to introduce and evaluate a novel two-dimensional wideband black-blood (BB) LGE sequence, incorporating wideband inversion recovery, wideband T2 preparation, and non-rigid motion correction (MOCO) reconstruction, to improve myocardial scar detection and address artifacts associated with implantable cardioverter defibrillators (ICDs).</p><p><strong>Materials and methods: </strong>The wideband MOCO free-breathing BB-LGE sequence was tested on a sheep with ischemic scar and in 22 patients with cardiac disease, including 15 with cardiac implants, at 1.5 T. Wideband MOCO free-breathing BB-LGE sequence was compared with conventional and wideband breath-held PSIR-LGE and conventional and wideband breath-held BB-LGE techniques. Image sharpness, entropy, and scar-to-blood, scar-to-myocardium, and blood-to-myocardium contrast were analyzed and reconstruction times were measured. Two expert readers assessed the image quality, ICD artifact severity, and the diagnostic confidence with scar extent. Finally, for the animal study, histopathological assessment of the heart was performed to confirm the presence and localization of scar tissue.</p><p><strong>Results: </strong>In the animal, wideband MOCO free-breathing BB-LGE were reconstructed in 0.6 s and demonstrated a 200 % improvement in scar-to-blood contrast compared to wideband breath-held PSIR-LGE, with significant improvement in image sharpness and reduction in entropy. It also effectively minimized ICD artifacts and accurately detected scars. In patients, wideband MOCO free-breathing BB-LGE were reconstructed in 1.5 ± 0.4 (standard deviation) s per slice. Seventeen patients (17/22; 77 %) with myocardial scars were confidently diagnosed with wideband MOCO free-breathing BB-LGE, compared to 11 (11/22; 50 %) with wideband breath-held PSIR-LGE (P < 0.01).</p><p><strong>Conclusion: </strong>Free-breathing wideband T2-prepared black-blood LGE imaging, combined with motion-corrected reconstruction, offers a promising diagnostic approach for the evaluation of myocardial lesions in patients with ICDs.</p>","PeriodicalId":48656,"journal":{"name":"Diagnostic and Interventional Imaging","volume":" ","pages":""},"PeriodicalIF":4.9000,"publicationDate":"2024-12-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Improved myocardial scar visualization using free-breathing motion-corrected wideband black-blood late gadolinium enhancement imaging in patients with implantable cardiac device.\",\"authors\":\"Pauline Gut, Hubert Cochet, Panagiotis Antiochos, Guido Caluori, Baptiste Durand, Marion Constantin, Konstantinos Vlachos, Kalvin Narceau, Ambra Masi, Jürg Schwitter, Frederic Sacher, Pierre Jaïs, Matthias Stuber, Aurélien Bustin\",\"doi\":\"10.1016/j.diii.2024.12.001\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Purpose: </strong>The purpose of this study was to introduce and evaluate a novel two-dimensional wideband black-blood (BB) LGE sequence, incorporating wideband inversion recovery, wideband T2 preparation, and non-rigid motion correction (MOCO) reconstruction, to improve myocardial scar detection and address artifacts associated with implantable cardioverter defibrillators (ICDs).</p><p><strong>Materials and methods: </strong>The wideband MOCO free-breathing BB-LGE sequence was tested on a sheep with ischemic scar and in 22 patients with cardiac disease, including 15 with cardiac implants, at 1.5 T. Wideband MOCO free-breathing BB-LGE sequence was compared with conventional and wideband breath-held PSIR-LGE and conventional and wideband breath-held BB-LGE techniques. Image sharpness, entropy, and scar-to-blood, scar-to-myocardium, and blood-to-myocardium contrast were analyzed and reconstruction times were measured. Two expert readers assessed the image quality, ICD artifact severity, and the diagnostic confidence with scar extent. Finally, for the animal study, histopathological assessment of the heart was performed to confirm the presence and localization of scar tissue.</p><p><strong>Results: </strong>In the animal, wideband MOCO free-breathing BB-LGE were reconstructed in 0.6 s and demonstrated a 200 % improvement in scar-to-blood contrast compared to wideband breath-held PSIR-LGE, with significant improvement in image sharpness and reduction in entropy. It also effectively minimized ICD artifacts and accurately detected scars. In patients, wideband MOCO free-breathing BB-LGE were reconstructed in 1.5 ± 0.4 (standard deviation) s per slice. Seventeen patients (17/22; 77 %) with myocardial scars were confidently diagnosed with wideband MOCO free-breathing BB-LGE, compared to 11 (11/22; 50 %) with wideband breath-held PSIR-LGE (P < 0.01).</p><p><strong>Conclusion: </strong>Free-breathing wideband T2-prepared black-blood LGE imaging, combined with motion-corrected reconstruction, offers a promising diagnostic approach for the evaluation of myocardial lesions in patients with ICDs.</p>\",\"PeriodicalId\":48656,\"journal\":{\"name\":\"Diagnostic and Interventional Imaging\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":4.9000,\"publicationDate\":\"2024-12-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Diagnostic and Interventional Imaging\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1016/j.diii.2024.12.001\",\"RegionNum\":2,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"RADIOLOGY, NUCLEAR MEDICINE & MEDICAL IMAGING\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Diagnostic and Interventional Imaging","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1016/j.diii.2024.12.001","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"RADIOLOGY, NUCLEAR MEDICINE & MEDICAL IMAGING","Score":null,"Total":0}
Improved myocardial scar visualization using free-breathing motion-corrected wideband black-blood late gadolinium enhancement imaging in patients with implantable cardiac device.
Purpose: The purpose of this study was to introduce and evaluate a novel two-dimensional wideband black-blood (BB) LGE sequence, incorporating wideband inversion recovery, wideband T2 preparation, and non-rigid motion correction (MOCO) reconstruction, to improve myocardial scar detection and address artifacts associated with implantable cardioverter defibrillators (ICDs).
Materials and methods: The wideband MOCO free-breathing BB-LGE sequence was tested on a sheep with ischemic scar and in 22 patients with cardiac disease, including 15 with cardiac implants, at 1.5 T. Wideband MOCO free-breathing BB-LGE sequence was compared with conventional and wideband breath-held PSIR-LGE and conventional and wideband breath-held BB-LGE techniques. Image sharpness, entropy, and scar-to-blood, scar-to-myocardium, and blood-to-myocardium contrast were analyzed and reconstruction times were measured. Two expert readers assessed the image quality, ICD artifact severity, and the diagnostic confidence with scar extent. Finally, for the animal study, histopathological assessment of the heart was performed to confirm the presence and localization of scar tissue.
Results: In the animal, wideband MOCO free-breathing BB-LGE were reconstructed in 0.6 s and demonstrated a 200 % improvement in scar-to-blood contrast compared to wideband breath-held PSIR-LGE, with significant improvement in image sharpness and reduction in entropy. It also effectively minimized ICD artifacts and accurately detected scars. In patients, wideband MOCO free-breathing BB-LGE were reconstructed in 1.5 ± 0.4 (standard deviation) s per slice. Seventeen patients (17/22; 77 %) with myocardial scars were confidently diagnosed with wideband MOCO free-breathing BB-LGE, compared to 11 (11/22; 50 %) with wideband breath-held PSIR-LGE (P < 0.01).
Conclusion: Free-breathing wideband T2-prepared black-blood LGE imaging, combined with motion-corrected reconstruction, offers a promising diagnostic approach for the evaluation of myocardial lesions in patients with ICDs.
期刊介绍:
Diagnostic and Interventional Imaging accepts publications originating from any part of the world based only on their scientific merit. The Journal focuses on illustrated articles with great iconographic topics and aims at aiding sharpening clinical decision-making skills as well as following high research topics. All articles are published in English.
Diagnostic and Interventional Imaging publishes editorials, technical notes, letters, original and review articles on abdominal, breast, cancer, cardiac, emergency, forensic medicine, head and neck, musculoskeletal, gastrointestinal, genitourinary, interventional, obstetric, pediatric, thoracic and vascular imaging, neuroradiology, nuclear medicine, as well as contrast material, computer developments, health policies and practice, and medical physics relevant to imaging.