莫罗尼苷通过调节TLR4/NF-κB途径改善七氟醚麻醉诱发的老年小鼠认知功能障碍

0 MEDICINE, RESEARCH & EXPERIMENTAL
Jianxing Chen, Bo Peng, Wenqian Lin, Yinjun Mao, Yongsheng Wang
{"title":"莫罗尼苷通过调节TLR4/NF-κB途径改善七氟醚麻醉诱发的老年小鼠认知功能障碍","authors":"Jianxing Chen, Bo Peng, Wenqian Lin, Yinjun Mao, Yongsheng Wang","doi":"10.17305/bb.2024.11433","DOIUrl":null,"url":null,"abstract":"<p><p>Morroniside (Mor) is a bioactive compound in Cornus officinalis with anti-inflammatory, neuroprotective and antioxidant properties. Prolonged use of the anesthetic sevoflurane (Sev) has been connected to the development postoperative cognitive dysfunction (POCD). This research aims to elucidate the mechanism of action of Mor to improve cognitive impairment. A model of cognitive dysfunction induced by Sev was established in aged mice and tested for behavioral analysis using the water maze experiment. Histopathological changes and neuronal apoptosis in mouse hippocampus were observed by hematoxylin and eosin (HE) staining, Nissl staining, and TUNEL staining. ELISA and qRT-PCR determined the levels of inflammatory factors. Phenotypic transformation of microglia in hippocampal tissue was assessed by immunofluorescence, flow cytometry, and qRT-PCR. The interaction between Mor and TLR4 was analyzed using molecular docking. Western blot identified the levels of apoptosis-related proteins, synapse-related proteins, and TLR4/NF-κB pathway proteins. Inhalation of Sev caused a notable reduction in learning and spatial memory in old mice, which was dose-dependently ameliorated by Mor. Mor inhibited neuroinflammation, modulated the polarization state of hippocampal microglia, promoted their polarization to M2 type, alleviated Sev-induced hippocampal tissue damage and neuronal apoptosis. Notably, Mor can bind well with TLR4 and reduce TLR4-positive expression. Mor blocked Sev-induced TLR4/NF-κB pathway activation in hippocampal tissues, and the TLR4 agonist CRX-527 attenuated the effect of Mor. In conclusion, Mor blocked the TLR4/NF-κB pathway, reducing hippocampal tissue damage and neuroinflammation caused by Sev, which in turn improving cognitive impairment in aged mice.</p>","PeriodicalId":72398,"journal":{"name":"Biomolecules & biomedicine","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-12-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Morroniside ameliorates sevoflurane anesthesia-induced cognitive dysfunction in aged mice through modulating the TLR4/NF-κB pathway.\",\"authors\":\"Jianxing Chen, Bo Peng, Wenqian Lin, Yinjun Mao, Yongsheng Wang\",\"doi\":\"10.17305/bb.2024.11433\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Morroniside (Mor) is a bioactive compound in Cornus officinalis with anti-inflammatory, neuroprotective and antioxidant properties. Prolonged use of the anesthetic sevoflurane (Sev) has been connected to the development postoperative cognitive dysfunction (POCD). This research aims to elucidate the mechanism of action of Mor to improve cognitive impairment. A model of cognitive dysfunction induced by Sev was established in aged mice and tested for behavioral analysis using the water maze experiment. Histopathological changes and neuronal apoptosis in mouse hippocampus were observed by hematoxylin and eosin (HE) staining, Nissl staining, and TUNEL staining. ELISA and qRT-PCR determined the levels of inflammatory factors. Phenotypic transformation of microglia in hippocampal tissue was assessed by immunofluorescence, flow cytometry, and qRT-PCR. The interaction between Mor and TLR4 was analyzed using molecular docking. Western blot identified the levels of apoptosis-related proteins, synapse-related proteins, and TLR4/NF-κB pathway proteins. Inhalation of Sev caused a notable reduction in learning and spatial memory in old mice, which was dose-dependently ameliorated by Mor. Mor inhibited neuroinflammation, modulated the polarization state of hippocampal microglia, promoted their polarization to M2 type, alleviated Sev-induced hippocampal tissue damage and neuronal apoptosis. Notably, Mor can bind well with TLR4 and reduce TLR4-positive expression. Mor blocked Sev-induced TLR4/NF-κB pathway activation in hippocampal tissues, and the TLR4 agonist CRX-527 attenuated the effect of Mor. In conclusion, Mor blocked the TLR4/NF-κB pathway, reducing hippocampal tissue damage and neuroinflammation caused by Sev, which in turn improving cognitive impairment in aged mice.</p>\",\"PeriodicalId\":72398,\"journal\":{\"name\":\"Biomolecules & biomedicine\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-12-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Biomolecules & biomedicine\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.17305/bb.2024.11433\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"0\",\"JCRName\":\"MEDICINE, RESEARCH & EXPERIMENTAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biomolecules & biomedicine","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.17305/bb.2024.11433","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"0","JCRName":"MEDICINE, RESEARCH & EXPERIMENTAL","Score":null,"Total":0}
引用次数: 0

摘要

本文章由计算机程序翻译,如有差异,请以英文原文为准。
Morroniside ameliorates sevoflurane anesthesia-induced cognitive dysfunction in aged mice through modulating the TLR4/NF-κB pathway.

Morroniside (Mor) is a bioactive compound in Cornus officinalis with anti-inflammatory, neuroprotective and antioxidant properties. Prolonged use of the anesthetic sevoflurane (Sev) has been connected to the development postoperative cognitive dysfunction (POCD). This research aims to elucidate the mechanism of action of Mor to improve cognitive impairment. A model of cognitive dysfunction induced by Sev was established in aged mice and tested for behavioral analysis using the water maze experiment. Histopathological changes and neuronal apoptosis in mouse hippocampus were observed by hematoxylin and eosin (HE) staining, Nissl staining, and TUNEL staining. ELISA and qRT-PCR determined the levels of inflammatory factors. Phenotypic transformation of microglia in hippocampal tissue was assessed by immunofluorescence, flow cytometry, and qRT-PCR. The interaction between Mor and TLR4 was analyzed using molecular docking. Western blot identified the levels of apoptosis-related proteins, synapse-related proteins, and TLR4/NF-κB pathway proteins. Inhalation of Sev caused a notable reduction in learning and spatial memory in old mice, which was dose-dependently ameliorated by Mor. Mor inhibited neuroinflammation, modulated the polarization state of hippocampal microglia, promoted their polarization to M2 type, alleviated Sev-induced hippocampal tissue damage and neuronal apoptosis. Notably, Mor can bind well with TLR4 and reduce TLR4-positive expression. Mor blocked Sev-induced TLR4/NF-κB pathway activation in hippocampal tissues, and the TLR4 agonist CRX-527 attenuated the effect of Mor. In conclusion, Mor blocked the TLR4/NF-κB pathway, reducing hippocampal tissue damage and neuroinflammation caused by Sev, which in turn improving cognitive impairment in aged mice.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
1.10
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信