{"title":"评估掺入甘蔗渣灰、聚丙烯纤维和海砂-海水提高轻质泡沫混凝土物理-机械性能的适宜性。","authors":"Vinh Ngoc Chau, Lanh Si Ho, Tuan Quoc Hoang, Viet Quoc Dang","doi":"10.1177/00368504241306144","DOIUrl":null,"url":null,"abstract":"<p><p>This study aims to explore the feasibility of replacing traditional components, such as Portland cement, river sand and tap water with sugarcane bagasse ash (SCBA), polypropylene (PP) fibers, and sea sand-seawater (SSSW) in lightweight foamed concrete (LWFC) production. SCBA was used in the range from 0 to 15% as cement replacement, and PP fibers were used with dosage from 0% to 1% by volume of LWFC. Meanwhile, SSSW was used to completely replace river sand and tap water. The investigation delves into the fundamental physico-mechanical properties of LWFC, encompassing compressive strength, splitting tensile strength, and water absorption. The incorporation of SCBA initially displayed a negative impact on the early strength of LWFC, which was mitigated by the favorable effects of PP fibers and SSSW. At later ages, SCBA contributed to increased compressive strength, yet a threshold level was identified beyond which excessive SCBA adversely affected this strength property. Furthermore, statistical regression analyses were employed to interpret test results, revealing promising findings. A regression model was proposed to predict splitting tensile strength LWFC from corresponding compressive strength, yielding an R<sup>2</sup> of 0.74. Lastly, utilizing SCBA as cement replacement and incorporating SSSW into LWFC production resulted in reduced water absorption.</p>","PeriodicalId":56061,"journal":{"name":"Science Progress","volume":"107 4","pages":"368504241306144"},"PeriodicalIF":2.6000,"publicationDate":"2024-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11639039/pdf/","citationCount":"0","resultStr":"{\"title\":\"Evaluating the suitability of incorporating sugarcane bagasse ash, polypropylene fibers, and sea sand-seawater in enhancing physico-mechanical properties of lightweight foamed concrete.\",\"authors\":\"Vinh Ngoc Chau, Lanh Si Ho, Tuan Quoc Hoang, Viet Quoc Dang\",\"doi\":\"10.1177/00368504241306144\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>This study aims to explore the feasibility of replacing traditional components, such as Portland cement, river sand and tap water with sugarcane bagasse ash (SCBA), polypropylene (PP) fibers, and sea sand-seawater (SSSW) in lightweight foamed concrete (LWFC) production. SCBA was used in the range from 0 to 15% as cement replacement, and PP fibers were used with dosage from 0% to 1% by volume of LWFC. Meanwhile, SSSW was used to completely replace river sand and tap water. The investigation delves into the fundamental physico-mechanical properties of LWFC, encompassing compressive strength, splitting tensile strength, and water absorption. The incorporation of SCBA initially displayed a negative impact on the early strength of LWFC, which was mitigated by the favorable effects of PP fibers and SSSW. At later ages, SCBA contributed to increased compressive strength, yet a threshold level was identified beyond which excessive SCBA adversely affected this strength property. Furthermore, statistical regression analyses were employed to interpret test results, revealing promising findings. A regression model was proposed to predict splitting tensile strength LWFC from corresponding compressive strength, yielding an R<sup>2</sup> of 0.74. Lastly, utilizing SCBA as cement replacement and incorporating SSSW into LWFC production resulted in reduced water absorption.</p>\",\"PeriodicalId\":56061,\"journal\":{\"name\":\"Science Progress\",\"volume\":\"107 4\",\"pages\":\"368504241306144\"},\"PeriodicalIF\":2.6000,\"publicationDate\":\"2024-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11639039/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Science Progress\",\"FirstCategoryId\":\"103\",\"ListUrlMain\":\"https://doi.org/10.1177/00368504241306144\",\"RegionNum\":4,\"RegionCategory\":\"综合性期刊\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MULTIDISCIPLINARY SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Science Progress","FirstCategoryId":"103","ListUrlMain":"https://doi.org/10.1177/00368504241306144","RegionNum":4,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
Evaluating the suitability of incorporating sugarcane bagasse ash, polypropylene fibers, and sea sand-seawater in enhancing physico-mechanical properties of lightweight foamed concrete.
This study aims to explore the feasibility of replacing traditional components, such as Portland cement, river sand and tap water with sugarcane bagasse ash (SCBA), polypropylene (PP) fibers, and sea sand-seawater (SSSW) in lightweight foamed concrete (LWFC) production. SCBA was used in the range from 0 to 15% as cement replacement, and PP fibers were used with dosage from 0% to 1% by volume of LWFC. Meanwhile, SSSW was used to completely replace river sand and tap water. The investigation delves into the fundamental physico-mechanical properties of LWFC, encompassing compressive strength, splitting tensile strength, and water absorption. The incorporation of SCBA initially displayed a negative impact on the early strength of LWFC, which was mitigated by the favorable effects of PP fibers and SSSW. At later ages, SCBA contributed to increased compressive strength, yet a threshold level was identified beyond which excessive SCBA adversely affected this strength property. Furthermore, statistical regression analyses were employed to interpret test results, revealing promising findings. A regression model was proposed to predict splitting tensile strength LWFC from corresponding compressive strength, yielding an R2 of 0.74. Lastly, utilizing SCBA as cement replacement and incorporating SSSW into LWFC production resulted in reduced water absorption.
期刊介绍:
Science Progress has for over 100 years been a highly regarded review publication in science, technology and medicine. Its objective is to excite the readers'' interest in areas with which they may not be fully familiar but which could facilitate their interest, or even activity, in a cognate field.