纵向数据因果推理的贝叶斯潜类方法。

IF 1.6 3区 医学 Q3 HEALTH CARE SCIENCES & SERVICES
Kuan Liu, Olli Saarela, George Tomlinson, Brian M Feldman, Eleanor Pullenayegum
{"title":"纵向数据因果推理的贝叶斯潜类方法。","authors":"Kuan Liu, Olli Saarela, George Tomlinson, Brian M Feldman, Eleanor Pullenayegum","doi":"10.1177/09622802241298704","DOIUrl":null,"url":null,"abstract":"<p><p>Bayesian methods are becoming increasingly in demand in clinical and public health comparative effectiveness research. Limited literature has explored parametric Bayesian causal approaches to handle time-dependent treatment and time-dependent covariates. In this article, building on to the work on Bayesian g-computation, we propose a fully Bayesian causal approach, implemented using latent confounder classes which represent the patient's disease and health status. Our setting is suitable when the latent class represents a true disease state that the physician is able to infer without misclassification based on manifest variables. We consider a causal effect that is confounded by the visit-specific latent class in a longitudinal setting and formulate the joint likelihood of the treatment, outcome and latent class models conditionally on the class indicators. The proposed causal structure with latent classes features dimension reduction of time-dependent confounders. We examine the performance of the proposed method using simulation studies and compare the proposed method to other causal methods for longitudinal data with time-dependent treatment and time-dependent confounding. Our approach is illustrated through a study of the effectiveness of intravenous immunoglobulin in treating newly diagnosed juvenile dermatomyositis.</p>","PeriodicalId":22038,"journal":{"name":"Statistical Methods in Medical Research","volume":" ","pages":"9622802241298704"},"PeriodicalIF":1.6000,"publicationDate":"2024-12-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A Bayesian latent class approach to causal inference with longitudinal data.\",\"authors\":\"Kuan Liu, Olli Saarela, George Tomlinson, Brian M Feldman, Eleanor Pullenayegum\",\"doi\":\"10.1177/09622802241298704\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Bayesian methods are becoming increasingly in demand in clinical and public health comparative effectiveness research. Limited literature has explored parametric Bayesian causal approaches to handle time-dependent treatment and time-dependent covariates. In this article, building on to the work on Bayesian g-computation, we propose a fully Bayesian causal approach, implemented using latent confounder classes which represent the patient's disease and health status. Our setting is suitable when the latent class represents a true disease state that the physician is able to infer without misclassification based on manifest variables. We consider a causal effect that is confounded by the visit-specific latent class in a longitudinal setting and formulate the joint likelihood of the treatment, outcome and latent class models conditionally on the class indicators. The proposed causal structure with latent classes features dimension reduction of time-dependent confounders. We examine the performance of the proposed method using simulation studies and compare the proposed method to other causal methods for longitudinal data with time-dependent treatment and time-dependent confounding. Our approach is illustrated through a study of the effectiveness of intravenous immunoglobulin in treating newly diagnosed juvenile dermatomyositis.</p>\",\"PeriodicalId\":22038,\"journal\":{\"name\":\"Statistical Methods in Medical Research\",\"volume\":\" \",\"pages\":\"9622802241298704\"},\"PeriodicalIF\":1.6000,\"publicationDate\":\"2024-12-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Statistical Methods in Medical Research\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1177/09622802241298704\",\"RegionNum\":3,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"HEALTH CARE SCIENCES & SERVICES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Statistical Methods in Medical Research","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1177/09622802241298704","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"HEALTH CARE SCIENCES & SERVICES","Score":null,"Total":0}
引用次数: 0

摘要

贝叶斯方法在临床和公共卫生比较有效性研究中的应用越来越广泛。有限的文献探讨了参数贝叶斯因果方法来处理时变治疗和时变协变量。在本文中,基于贝叶斯g计算的工作,我们提出了一种完全贝叶斯因果方法,使用代表患者疾病和健康状况的潜在混杂类实现。当潜在类别代表真实的疾病状态时,我们的设置是合适的,医生能够根据明显变量推断而不会出现错误分类。我们考虑了在纵向设置中被访问特异性潜在类别混淆的因果效应,并根据类别指标有条件地制定了治疗、结果和潜在类别模型的联合可能性。提出的具有潜在类别的因果结构的特征是时间相关混杂因素的降维。我们使用模拟研究检查了所提出方法的性能,并将所提出的方法与其他纵向数据的因果方法进行了比较,并进行了时间相关处理和时间相关混淆。我们的方法是通过静脉注射免疫球蛋白治疗新诊断的青少年皮肌炎的有效性的研究说明。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A Bayesian latent class approach to causal inference with longitudinal data.

Bayesian methods are becoming increasingly in demand in clinical and public health comparative effectiveness research. Limited literature has explored parametric Bayesian causal approaches to handle time-dependent treatment and time-dependent covariates. In this article, building on to the work on Bayesian g-computation, we propose a fully Bayesian causal approach, implemented using latent confounder classes which represent the patient's disease and health status. Our setting is suitable when the latent class represents a true disease state that the physician is able to infer without misclassification based on manifest variables. We consider a causal effect that is confounded by the visit-specific latent class in a longitudinal setting and formulate the joint likelihood of the treatment, outcome and latent class models conditionally on the class indicators. The proposed causal structure with latent classes features dimension reduction of time-dependent confounders. We examine the performance of the proposed method using simulation studies and compare the proposed method to other causal methods for longitudinal data with time-dependent treatment and time-dependent confounding. Our approach is illustrated through a study of the effectiveness of intravenous immunoglobulin in treating newly diagnosed juvenile dermatomyositis.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Statistical Methods in Medical Research
Statistical Methods in Medical Research 医学-数学与计算生物学
CiteScore
4.10
自引率
4.30%
发文量
127
审稿时长
>12 weeks
期刊介绍: Statistical Methods in Medical Research is a peer reviewed scholarly journal and is the leading vehicle for articles in all the main areas of medical statistics and an essential reference for all medical statisticians. This unique journal is devoted solely to statistics and medicine and aims to keep professionals abreast of the many powerful statistical techniques now available to the medical profession. This journal is a member of the Committee on Publication Ethics (COPE)
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信