通过基于 DIA 的蛋白质组分析比较全唾液和无细胞唾液。

IF 2.1 4区 生物学 Q3 BIOCHEMICAL RESEARCH METHODS
PROTEOMICS – Clinical Applications Pub Date : 2025-01-01 Epub Date: 2024-12-13 DOI:10.1002/prca.202400031
Ling-Ling Jiao, Hui-Lin Dong, Yan-Hua Qin, Jun Zhu, Peng-Lin Wu, Jing Liu, Yi Cao, Chang-Jian Wu, Yuan Zhang, Fan Cao, Feng Li, Huai-Yuan Zhu
{"title":"通过基于 DIA 的蛋白质组分析比较全唾液和无细胞唾液。","authors":"Ling-Ling Jiao, Hui-Lin Dong, Yan-Hua Qin, Jun Zhu, Peng-Lin Wu, Jing Liu, Yi Cao, Chang-Jian Wu, Yuan Zhang, Fan Cao, Feng Li, Huai-Yuan Zhu","doi":"10.1002/prca.202400031","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>Saliva has emerged as a promising diagnostic resource due to its accessibility, noninvasiveness, and repeatability, enabling early disease detection and timely intervention. However, current studies often overlook the distinction between whole saliva (WS) and cell-free saliva (CFS). Objective This study aims to compare the proteomic profiles of WS and CFS.</p><p><strong>Method and result: </strong>The saliva was detected with and without low-abundance protein enrichment using nanoparticles, employing DIA-MS technology. Our findings reveal a substantial enhancement in the detectability of low-abundance proteins in saliva with utilization of nanoparticles, enabling identification of 12%-15% low-abundance proteins previously undetectable in WS or CFS. In total, 3817 saliva proteins were identified, with 3413 found in WS and 2340 in CFS. More interestingly, we found that it was not the similarity of the samples that did the clustering, but rather it depended more on the different detection methods and sample types. And the predominant functions of the identified proteins in WS were related to oxidative phosphorylation and neurodegenerations, whereas those in CFS were primarily associated with nitrogen and glycosaminoglycan metabolism. And both exhibited functions in immune response and proteasome.</p><p><strong>Conclusion: </strong>This study represents the first comparison of WS and CFS, providing valuable experimental evidence for guiding the selection of research subjects in future saliva omics studies.</p>","PeriodicalId":20571,"journal":{"name":"PROTEOMICS – Clinical Applications","volume":" ","pages":"e202400031"},"PeriodicalIF":2.1000,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Comparisons of Whole Saliva and Cell Free Saliva by DIA-Based Proteome Profiling.\",\"authors\":\"Ling-Ling Jiao, Hui-Lin Dong, Yan-Hua Qin, Jun Zhu, Peng-Lin Wu, Jing Liu, Yi Cao, Chang-Jian Wu, Yuan Zhang, Fan Cao, Feng Li, Huai-Yuan Zhu\",\"doi\":\"10.1002/prca.202400031\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Background: </strong>Saliva has emerged as a promising diagnostic resource due to its accessibility, noninvasiveness, and repeatability, enabling early disease detection and timely intervention. However, current studies often overlook the distinction between whole saliva (WS) and cell-free saliva (CFS). Objective This study aims to compare the proteomic profiles of WS and CFS.</p><p><strong>Method and result: </strong>The saliva was detected with and without low-abundance protein enrichment using nanoparticles, employing DIA-MS technology. Our findings reveal a substantial enhancement in the detectability of low-abundance proteins in saliva with utilization of nanoparticles, enabling identification of 12%-15% low-abundance proteins previously undetectable in WS or CFS. In total, 3817 saliva proteins were identified, with 3413 found in WS and 2340 in CFS. More interestingly, we found that it was not the similarity of the samples that did the clustering, but rather it depended more on the different detection methods and sample types. And the predominant functions of the identified proteins in WS were related to oxidative phosphorylation and neurodegenerations, whereas those in CFS were primarily associated with nitrogen and glycosaminoglycan metabolism. And both exhibited functions in immune response and proteasome.</p><p><strong>Conclusion: </strong>This study represents the first comparison of WS and CFS, providing valuable experimental evidence for guiding the selection of research subjects in future saliva omics studies.</p>\",\"PeriodicalId\":20571,\"journal\":{\"name\":\"PROTEOMICS – Clinical Applications\",\"volume\":\" \",\"pages\":\"e202400031\"},\"PeriodicalIF\":2.1000,\"publicationDate\":\"2025-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"PROTEOMICS – Clinical Applications\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1002/prca.202400031\",\"RegionNum\":4,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2024/12/13 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q3\",\"JCRName\":\"BIOCHEMICAL RESEARCH METHODS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"PROTEOMICS – Clinical Applications","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1002/prca.202400031","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/12/13 0:00:00","PubModel":"Epub","JCR":"Q3","JCRName":"BIOCHEMICAL RESEARCH METHODS","Score":null,"Total":0}
引用次数: 0

摘要

背景:唾液因其易得性、无创伤性和可重复性,已成为一种前景广阔的诊断资源,可用于早期疾病检测和及时干预。然而,目前的研究往往忽略了全唾液(WS)和无细胞唾液(CFS)之间的区别。本研究旨在比较全唾液和无细胞唾液的蛋白质组特征:采用 DIA-MS 技术检测了使用纳米颗粒富集和未使用纳米颗粒富集低丰度蛋白质的唾液。我们的研究结果表明,利用纳米粒子大大提高了唾液中低丰度蛋白质的可检测性,从而鉴定出 12%-15% 以前在 WS 或 CFS 中检测不到的低丰度蛋白质。共鉴定出 3817 种唾液蛋白质,其中 3413 种在 WS 中发现,2340 种在 CFS 中发现。更有趣的是,我们发现并非样本的相似性导致了聚类,而是更多取决于不同的检测方法和样本类型。在 WS 中被鉴定的蛋白质的主要功能与氧化磷酸化和神经变性有关,而在 CFS 中被鉴定的蛋白质主要与氮和糖胺聚糖代谢有关。结论:本研究首次对 WS 和 CFS 进行了比较,为指导今后唾液全息研究中研究对象的选择提供了宝贵的实验证据。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Comparisons of Whole Saliva and Cell Free Saliva by DIA-Based Proteome Profiling.

Background: Saliva has emerged as a promising diagnostic resource due to its accessibility, noninvasiveness, and repeatability, enabling early disease detection and timely intervention. However, current studies often overlook the distinction between whole saliva (WS) and cell-free saliva (CFS). Objective This study aims to compare the proteomic profiles of WS and CFS.

Method and result: The saliva was detected with and without low-abundance protein enrichment using nanoparticles, employing DIA-MS technology. Our findings reveal a substantial enhancement in the detectability of low-abundance proteins in saliva with utilization of nanoparticles, enabling identification of 12%-15% low-abundance proteins previously undetectable in WS or CFS. In total, 3817 saliva proteins were identified, with 3413 found in WS and 2340 in CFS. More interestingly, we found that it was not the similarity of the samples that did the clustering, but rather it depended more on the different detection methods and sample types. And the predominant functions of the identified proteins in WS were related to oxidative phosphorylation and neurodegenerations, whereas those in CFS were primarily associated with nitrogen and glycosaminoglycan metabolism. And both exhibited functions in immune response and proteasome.

Conclusion: This study represents the first comparison of WS and CFS, providing valuable experimental evidence for guiding the selection of research subjects in future saliva omics studies.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
PROTEOMICS – Clinical Applications
PROTEOMICS – Clinical Applications 医学-生化研究方法
CiteScore
5.20
自引率
5.00%
发文量
50
审稿时长
1 months
期刊介绍: PROTEOMICS - Clinical Applications has developed into a key source of information in the field of applying proteomics to the study of human disease and translation to the clinic. With 12 issues per year, the journal will publish papers in all relevant areas including: -basic proteomic research designed to further understand the molecular mechanisms underlying dysfunction in human disease -the results of proteomic studies dedicated to the discovery and validation of diagnostic and prognostic disease biomarkers -the use of proteomics for the discovery of novel drug targets -the application of proteomics in the drug development pipeline -the use of proteomics as a component of clinical trials.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信