Sahar Oroujizad, Mohammad Almasi Kashi, Amir H Montazer
{"title":"Tuning specific absorption rate of Mn ferrite nanoparticles synthesized by a thermal decomposition method with different Mn concentrations.","authors":"Sahar Oroujizad, Mohammad Almasi Kashi, Amir H Montazer","doi":"10.1088/1361-6528/ad9def","DOIUrl":null,"url":null,"abstract":"<p><p>A thermal decomposition method is used to synthesize monodisperse Mn ferrite nanoparticles (NPs) by changing Mn concentration from 0.1 to 0.8 mmol. The effects of Mn concentration on structural, compositional, morphological, magnetic, and hyperthermia properties are investigated. Transmission electron microscopic images show that the morphology of the NPs changes from flower-like to polygonal with increasing the Mn concentration. The saturation magnetization reaches a maximum value of 48.32 emu/g and a minimum value of 11.09 emu/g with changing the Mn concentration, whereas the coercivity value decreases from 12.6 to 5.3 Oe. The first-order reversal curve (FORC) analysis enables the estimation of superparamagnetic contribution of the Mn ferrite NPs in the range of 21-59.5%. The highest specific absorption rate (SAR) value is obtained to be 385.37 W/g for Mn0.1Fe2.9O4 NPs with the maximum superparamagnetic contribution using a manganese concentration of 0.4 mmol.</p>","PeriodicalId":19035,"journal":{"name":"Nanotechnology","volume":" ","pages":""},"PeriodicalIF":2.9000,"publicationDate":"2024-12-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nanotechnology","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1088/1361-6528/ad9def","RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
Tuning specific absorption rate of Mn ferrite nanoparticles synthesized by a thermal decomposition method with different Mn concentrations.
A thermal decomposition method is used to synthesize monodisperse Mn ferrite nanoparticles (NPs) by changing Mn concentration from 0.1 to 0.8 mmol. The effects of Mn concentration on structural, compositional, morphological, magnetic, and hyperthermia properties are investigated. Transmission electron microscopic images show that the morphology of the NPs changes from flower-like to polygonal with increasing the Mn concentration. The saturation magnetization reaches a maximum value of 48.32 emu/g and a minimum value of 11.09 emu/g with changing the Mn concentration, whereas the coercivity value decreases from 12.6 to 5.3 Oe. The first-order reversal curve (FORC) analysis enables the estimation of superparamagnetic contribution of the Mn ferrite NPs in the range of 21-59.5%. The highest specific absorption rate (SAR) value is obtained to be 385.37 W/g for Mn0.1Fe2.9O4 NPs with the maximum superparamagnetic contribution using a manganese concentration of 0.4 mmol.
期刊介绍:
The journal aims to publish papers at the forefront of nanoscale science and technology and especially those of an interdisciplinary nature. Here, nanotechnology is taken to include the ability to individually address, control, and modify structures, materials and devices with nanometre precision, and the synthesis of such structures into systems of micro- and macroscopic dimensions such as MEMS based devices. It encompasses the understanding of the fundamental physics, chemistry, biology and technology of nanometre-scale objects and how such objects can be used in the areas of computation, sensors, nanostructured materials and nano-biotechnology.