分子遗传学的进展增加了对块茎物种生命周期和群体遗传结构的认识,为提高产量指明了途径。

IF 3.3 2区 生物学 Q2 MYCOLOGY
Mahesh C A Galappaththi, William A Dunstan, Giles E St J Hardy, Jen McComb, Mark P McHenry, Alessandra Zambonelli, Treena I Burgess
{"title":"分子遗传学的进展增加了对块茎物种生命周期和群体遗传结构的认识,为提高产量指明了途径。","authors":"Mahesh C A Galappaththi, William A Dunstan, Giles E St J Hardy, Jen McComb, Mark P McHenry, Alessandra Zambonelli, Treena I Burgess","doi":"10.1007/s00572-024-01177-1","DOIUrl":null,"url":null,"abstract":"<p><p>Truffles are possibly the only high-value cultivated organisms for which some aspects of the habit and life cycle have only recently been elucidated or remain unknown. Molecular techniques have helped explain the biological basis for some traditional empirical management techniques, such as inoculating soil with ascospores to improve yield, and have enhanced the detection of competitive or pathogenic soil microorganisms. Improved precision of assessment of the quality of inoculated seedlings is now possible. New knowledge of the genetic structure of populations has indicated that as trees age, the genotypes of mycorrhizae on inoculated trees change, and that there are large differences in the number of female and male genotypes participating in ascocarp formation. The plasticity of Tuber species has also been revealed, with maternal genotypes growing as an ectomycorrhiza in host tree roots and as surface mycelium or an endophyte in roots of adjacent non-mycorrhizal species. Refinement of management techniques has resulted from applying the new information, and the tools are now available to resolve the many outstanding gaps in our knowledge of Tuber biology.</p>","PeriodicalId":18965,"journal":{"name":"Mycorrhiza","volume":"35 1","pages":"2"},"PeriodicalIF":3.3000,"publicationDate":"2024-12-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Advances in molecular genetics have increased knowledge of Tuber species' life cycle and population genetic structure, indicating ways to improve yield.\",\"authors\":\"Mahesh C A Galappaththi, William A Dunstan, Giles E St J Hardy, Jen McComb, Mark P McHenry, Alessandra Zambonelli, Treena I Burgess\",\"doi\":\"10.1007/s00572-024-01177-1\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Truffles are possibly the only high-value cultivated organisms for which some aspects of the habit and life cycle have only recently been elucidated or remain unknown. Molecular techniques have helped explain the biological basis for some traditional empirical management techniques, such as inoculating soil with ascospores to improve yield, and have enhanced the detection of competitive or pathogenic soil microorganisms. Improved precision of assessment of the quality of inoculated seedlings is now possible. New knowledge of the genetic structure of populations has indicated that as trees age, the genotypes of mycorrhizae on inoculated trees change, and that there are large differences in the number of female and male genotypes participating in ascocarp formation. The plasticity of Tuber species has also been revealed, with maternal genotypes growing as an ectomycorrhiza in host tree roots and as surface mycelium or an endophyte in roots of adjacent non-mycorrhizal species. Refinement of management techniques has resulted from applying the new information, and the tools are now available to resolve the many outstanding gaps in our knowledge of Tuber biology.</p>\",\"PeriodicalId\":18965,\"journal\":{\"name\":\"Mycorrhiza\",\"volume\":\"35 1\",\"pages\":\"2\"},\"PeriodicalIF\":3.3000,\"publicationDate\":\"2024-12-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Mycorrhiza\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1007/s00572-024-01177-1\",\"RegionNum\":2,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MYCOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Mycorrhiza","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1007/s00572-024-01177-1","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MYCOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

松露可能是唯一一种高价值的栽培生物,其习性和生命周期的某些方面直到最近才被阐明或仍然未知。分子技术有助于解释一些传统经验性管理技术的生物学基础,例如用子囊孢子接种土壤以提高产量,并加强了对竞争或致病土壤微生物的检测。现在可以提高接种苗质量评估的精度。对群体遗传结构的新认识表明,随着树龄的增长,接种树木上菌根的基因型发生了变化,参与子囊形成的雌性和雄性基因型的数量存在很大差异。块茎物种的可塑性也被揭示出来,母体基因型在宿主树根中作为外生菌根生长,在邻近的非菌根物种的根中作为表面菌丝体或内生菌生长。由于应用了新的信息,管理技术得到了改进,现在可以使用这些工具来解决我们在块茎生物学知识方面的许多突出差距。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Advances in molecular genetics have increased knowledge of Tuber species' life cycle and population genetic structure, indicating ways to improve yield.

Truffles are possibly the only high-value cultivated organisms for which some aspects of the habit and life cycle have only recently been elucidated or remain unknown. Molecular techniques have helped explain the biological basis for some traditional empirical management techniques, such as inoculating soil with ascospores to improve yield, and have enhanced the detection of competitive or pathogenic soil microorganisms. Improved precision of assessment of the quality of inoculated seedlings is now possible. New knowledge of the genetic structure of populations has indicated that as trees age, the genotypes of mycorrhizae on inoculated trees change, and that there are large differences in the number of female and male genotypes participating in ascocarp formation. The plasticity of Tuber species has also been revealed, with maternal genotypes growing as an ectomycorrhiza in host tree roots and as surface mycelium or an endophyte in roots of adjacent non-mycorrhizal species. Refinement of management techniques has resulted from applying the new information, and the tools are now available to resolve the many outstanding gaps in our knowledge of Tuber biology.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Mycorrhiza
Mycorrhiza 生物-真菌学
CiteScore
8.20
自引率
2.60%
发文量
40
审稿时长
6-12 weeks
期刊介绍: Mycorrhiza is an international journal devoted to research into mycorrhizas - the widest symbioses in nature, involving plants and a range of soil fungi world-wide. The scope of Mycorrhiza covers all aspects of research into mycorrhizas, including molecular biology of the plants and fungi, fungal systematics, development and structure of mycorrhizas, and effects on plant physiology, productivity, reproduction and disease resistance. The scope also includes interactions between mycorrhizal fungi and other soil organisms and effects of mycorrhizas on plant biodiversity and ecosystem structure. Mycorrhiza contains original papers, short notes and review articles, along with commentaries and news items. It forms a platform for new concepts and discussions, and is a basis for a truly international forum of mycorrhizologists from all over the world.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信