Basel A Abdel-Wahab, Ehab A M El-Shoura, Mohammed S Habeeb, Nayef A Aldabaan, Yasmine H Ahmed, Dalia Zaafar
{"title":"哌嗪阿魏酸盐对糖尿病诱发的睾丸功能障碍的影响:揭示遗传学观点、MAPK/ERK/JNK 途径和 TGF-β 信号传导。","authors":"Basel A Abdel-Wahab, Ehab A M El-Shoura, Mohammed S Habeeb, Nayef A Aldabaan, Yasmine H Ahmed, Dalia Zaafar","doi":"10.1007/s00210-024-03654-y","DOIUrl":null,"url":null,"abstract":"<p><p>Diabetic testicular dysfunction (DTD) poses a significant threat to male reproductive health. This study delves into the potential of piperazine ferulate (PF), a natural phenolic compound, in alleviating DTD and sheds light on its underlying mechanisms in rats. Animals were divided into the control, PF, diabetic, and diabetic plus PF groups. Diabetes was induced in rats with a single intraperitoneal (i.p.) injection of streptozotocin (STZ) at 50 mg/kg. PF was administered at 50 mg/kg/day via i.p. injection for four weeks. Significant changes in sexual behavior were observed in diabetic rats, which additionally revealed lower serum levels of testosterone, FSH, and LH. The abnormalities in sperm count, viability, motility, and morphology occurred along with the demonstrated suppression of genes and protein expression related to spermatogenesis. Atrophy of the seminiferous tubules and extensive degeneration and necrosis of the germ and Leydig cells were highlighted by histopathological examination. The testicular function of diabetic rats was significantly improved after PF administration, evidenced by normalized testicular histology, increased testosterone levels, and enhanced sperm quality. In addition to reducing inflammatory cytokines, COX2, and NF-κB expression, pf administration elevated the antioxidant levels and Nrf2/HO-1 expression. Furthermore, key signaling pathways involved in testicular degeneration are regulated by PF. It promoted cell survival and tissue repair by activating the protective TGF-β signaling pathway and attenuating the MAPK/ERK/JNK signaling cascade, which in turn reduced inflammation and apoptosis. PF suppressed the expression of INSL3, SPHK1, CD62E, ANGPTL2, and miR-148a-5p, while increasing the expression of testicular genes like HSD17B1, DAZL, and S1P, addressing DTD. This study highlights the potential of PF to restore testicular function and fertility in diabetic males by modulating genetic and signaling pathways.</p>","PeriodicalId":18876,"journal":{"name":"Naunyn-Schmiedeberg's archives of pharmacology","volume":" ","pages":""},"PeriodicalIF":3.1000,"publicationDate":"2024-12-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Piperazine ferulate impact on diabetes-induced testicular dysfunction: unveiling genetic insights, MAPK/ERK/JNK pathways, and TGF-β signaling.\",\"authors\":\"Basel A Abdel-Wahab, Ehab A M El-Shoura, Mohammed S Habeeb, Nayef A Aldabaan, Yasmine H Ahmed, Dalia Zaafar\",\"doi\":\"10.1007/s00210-024-03654-y\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Diabetic testicular dysfunction (DTD) poses a significant threat to male reproductive health. This study delves into the potential of piperazine ferulate (PF), a natural phenolic compound, in alleviating DTD and sheds light on its underlying mechanisms in rats. Animals were divided into the control, PF, diabetic, and diabetic plus PF groups. Diabetes was induced in rats with a single intraperitoneal (i.p.) injection of streptozotocin (STZ) at 50 mg/kg. PF was administered at 50 mg/kg/day via i.p. injection for four weeks. Significant changes in sexual behavior were observed in diabetic rats, which additionally revealed lower serum levels of testosterone, FSH, and LH. The abnormalities in sperm count, viability, motility, and morphology occurred along with the demonstrated suppression of genes and protein expression related to spermatogenesis. Atrophy of the seminiferous tubules and extensive degeneration and necrosis of the germ and Leydig cells were highlighted by histopathological examination. The testicular function of diabetic rats was significantly improved after PF administration, evidenced by normalized testicular histology, increased testosterone levels, and enhanced sperm quality. In addition to reducing inflammatory cytokines, COX2, and NF-κB expression, pf administration elevated the antioxidant levels and Nrf2/HO-1 expression. Furthermore, key signaling pathways involved in testicular degeneration are regulated by PF. It promoted cell survival and tissue repair by activating the protective TGF-β signaling pathway and attenuating the MAPK/ERK/JNK signaling cascade, which in turn reduced inflammation and apoptosis. PF suppressed the expression of INSL3, SPHK1, CD62E, ANGPTL2, and miR-148a-5p, while increasing the expression of testicular genes like HSD17B1, DAZL, and S1P, addressing DTD. This study highlights the potential of PF to restore testicular function and fertility in diabetic males by modulating genetic and signaling pathways.</p>\",\"PeriodicalId\":18876,\"journal\":{\"name\":\"Naunyn-Schmiedeberg's archives of pharmacology\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":3.1000,\"publicationDate\":\"2024-12-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Naunyn-Schmiedeberg's archives of pharmacology\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1007/s00210-024-03654-y\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"PHARMACOLOGY & PHARMACY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Naunyn-Schmiedeberg's archives of pharmacology","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1007/s00210-024-03654-y","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"PHARMACOLOGY & PHARMACY","Score":null,"Total":0}
Piperazine ferulate impact on diabetes-induced testicular dysfunction: unveiling genetic insights, MAPK/ERK/JNK pathways, and TGF-β signaling.
Diabetic testicular dysfunction (DTD) poses a significant threat to male reproductive health. This study delves into the potential of piperazine ferulate (PF), a natural phenolic compound, in alleviating DTD and sheds light on its underlying mechanisms in rats. Animals were divided into the control, PF, diabetic, and diabetic plus PF groups. Diabetes was induced in rats with a single intraperitoneal (i.p.) injection of streptozotocin (STZ) at 50 mg/kg. PF was administered at 50 mg/kg/day via i.p. injection for four weeks. Significant changes in sexual behavior were observed in diabetic rats, which additionally revealed lower serum levels of testosterone, FSH, and LH. The abnormalities in sperm count, viability, motility, and morphology occurred along with the demonstrated suppression of genes and protein expression related to spermatogenesis. Atrophy of the seminiferous tubules and extensive degeneration and necrosis of the germ and Leydig cells were highlighted by histopathological examination. The testicular function of diabetic rats was significantly improved after PF administration, evidenced by normalized testicular histology, increased testosterone levels, and enhanced sperm quality. In addition to reducing inflammatory cytokines, COX2, and NF-κB expression, pf administration elevated the antioxidant levels and Nrf2/HO-1 expression. Furthermore, key signaling pathways involved in testicular degeneration are regulated by PF. It promoted cell survival and tissue repair by activating the protective TGF-β signaling pathway and attenuating the MAPK/ERK/JNK signaling cascade, which in turn reduced inflammation and apoptosis. PF suppressed the expression of INSL3, SPHK1, CD62E, ANGPTL2, and miR-148a-5p, while increasing the expression of testicular genes like HSD17B1, DAZL, and S1P, addressing DTD. This study highlights the potential of PF to restore testicular function and fertility in diabetic males by modulating genetic and signaling pathways.
期刊介绍:
Naunyn-Schmiedeberg''s Archives of Pharmacology was founded in 1873 by B. Naunyn, O. Schmiedeberg and E. Klebs as Archiv für experimentelle Pathologie und Pharmakologie, is the offical journal of the German Society of Experimental and Clinical Pharmacology and Toxicology (Deutsche Gesellschaft für experimentelle und klinische Pharmakologie und Toxikologie, DGPT) and the Sphingolipid Club. The journal publishes invited reviews, original articles, short communications and meeting reports and appears monthly. Naunyn-Schmiedeberg''s Archives of Pharmacology welcomes manuscripts for consideration of publication that report new and significant information on drug action and toxicity of chemical compounds. Thus, its scope covers all fields of experimental and clinical pharmacology as well as toxicology and includes studies in the fields of neuropharmacology and cardiovascular pharmacology as well as those describing drug actions at the cellular, biochemical and molecular levels. Moreover, submission of clinical trials with healthy volunteers or patients is encouraged. Short communications provide a means for rapid publication of significant findings of current interest that represent a conceptual advance in the field.