DICE:基于距离的单细胞拷贝数系统发育快速而准确的重建。

IF 3.3 2区 生物学 Q1 BIOLOGY
Life Science Alliance Pub Date : 2024-12-12 Print Date: 2025-03-01 DOI:10.26508/lsa.202402923
Samson Weiner, Mukul S Bansal
{"title":"DICE:基于距离的单细胞拷贝数系统发育快速而准确的重建。","authors":"Samson Weiner, Mukul S Bansal","doi":"10.26508/lsa.202402923","DOIUrl":null,"url":null,"abstract":"<p><p>Somatic copy number alterations (sCNAs) are valuable phylogenetic markers for inferring evolutionary relationships among tumor cell subpopulations. Advances in single-cell DNA sequencing technologies are making it possible to obtain such sCNAs datasets at ever-larger scales. However, existing methods for reconstructing phylogenies from sCNAs are often too slow for large datasets. We propose two new distance-based methods, <i>DICE-bar</i> and <i>DICE-star</i>, for reconstructing single-cell tumor phylogenies from sCNA data. Using carefully simulated datasets, we find that DICE-bar matches or exceeds the accuracies of all other methods on noise-free datasets and that DICE-star shows exceptional robustness to noise and outperforms all other methods on noisy datasets. Both methods are also orders of magnitude faster than many existing methods. Our experimental analysis also reveals how noise/error in copy number inference, as expected for real datasets, can drastically impact the accuracies of most methods. We apply DICE-star, the most accurate method on error-prone datasets, to several real single-cell breast and ovarian cancer datasets and find that it rapidly produces phylogenies of equivalent or greater reliability compared with existing methods.</p>","PeriodicalId":18081,"journal":{"name":"Life Science Alliance","volume":"8 3","pages":""},"PeriodicalIF":3.3000,"publicationDate":"2024-12-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11638338/pdf/","citationCount":"0","resultStr":"{\"title\":\"DICE: fast and accurate distance-based reconstruction of single-cell copy number phylogenies.\",\"authors\":\"Samson Weiner, Mukul S Bansal\",\"doi\":\"10.26508/lsa.202402923\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Somatic copy number alterations (sCNAs) are valuable phylogenetic markers for inferring evolutionary relationships among tumor cell subpopulations. Advances in single-cell DNA sequencing technologies are making it possible to obtain such sCNAs datasets at ever-larger scales. However, existing methods for reconstructing phylogenies from sCNAs are often too slow for large datasets. We propose two new distance-based methods, <i>DICE-bar</i> and <i>DICE-star</i>, for reconstructing single-cell tumor phylogenies from sCNA data. Using carefully simulated datasets, we find that DICE-bar matches or exceeds the accuracies of all other methods on noise-free datasets and that DICE-star shows exceptional robustness to noise and outperforms all other methods on noisy datasets. Both methods are also orders of magnitude faster than many existing methods. Our experimental analysis also reveals how noise/error in copy number inference, as expected for real datasets, can drastically impact the accuracies of most methods. We apply DICE-star, the most accurate method on error-prone datasets, to several real single-cell breast and ovarian cancer datasets and find that it rapidly produces phylogenies of equivalent or greater reliability compared with existing methods.</p>\",\"PeriodicalId\":18081,\"journal\":{\"name\":\"Life Science Alliance\",\"volume\":\"8 3\",\"pages\":\"\"},\"PeriodicalIF\":3.3000,\"publicationDate\":\"2024-12-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11638338/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Life Science Alliance\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.26508/lsa.202402923\",\"RegionNum\":2,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2025/3/1 0:00:00\",\"PubModel\":\"Print\",\"JCR\":\"Q1\",\"JCRName\":\"BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Life Science Alliance","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.26508/lsa.202402923","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/3/1 0:00:00","PubModel":"Print","JCR":"Q1","JCRName":"BIOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

体细胞拷贝数改变(sCNAs)是推断肿瘤细胞亚群之间进化关系的重要系统发育标记。单细胞 DNA 测序技术的进步使得获得更大规模的 sCNAs 数据集成为可能。然而,现有的从 sCNAs 重建系统发生的方法对于大型数据集来说往往过于缓慢。我们提出了两种基于距离的新方法:DICE-bar 和 DICE-star,用于从 sCNA 数据重建单细胞肿瘤系统发生。通过仔细模拟数据集,我们发现在无噪声数据集上,DICE-bar 的精确度达到或超过了所有其他方法,而在有噪声数据集上,DICE-star 对噪声表现出卓越的鲁棒性,优于所有其他方法。这两种方法的速度也比许多现有方法快几个数量级。我们的实验分析还揭示了拷贝数推断中的噪声/误差是如何极大地影响大多数方法的准确性的,这也是真实数据集的预期结果。我们将在易出错数据集上最准确的方法 DICE-star 应用于几个真实的单细胞乳腺癌和卵巢癌数据集,发现与现有方法相比,DICE-star 能快速生成具有同等或更高可靠性的系统发生。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
DICE: fast and accurate distance-based reconstruction of single-cell copy number phylogenies.

Somatic copy number alterations (sCNAs) are valuable phylogenetic markers for inferring evolutionary relationships among tumor cell subpopulations. Advances in single-cell DNA sequencing technologies are making it possible to obtain such sCNAs datasets at ever-larger scales. However, existing methods for reconstructing phylogenies from sCNAs are often too slow for large datasets. We propose two new distance-based methods, DICE-bar and DICE-star, for reconstructing single-cell tumor phylogenies from sCNA data. Using carefully simulated datasets, we find that DICE-bar matches or exceeds the accuracies of all other methods on noise-free datasets and that DICE-star shows exceptional robustness to noise and outperforms all other methods on noisy datasets. Both methods are also orders of magnitude faster than many existing methods. Our experimental analysis also reveals how noise/error in copy number inference, as expected for real datasets, can drastically impact the accuracies of most methods. We apply DICE-star, the most accurate method on error-prone datasets, to several real single-cell breast and ovarian cancer datasets and find that it rapidly produces phylogenies of equivalent or greater reliability compared with existing methods.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Life Science Alliance
Life Science Alliance Agricultural and Biological Sciences-Plant Science
CiteScore
5.80
自引率
2.30%
发文量
241
审稿时长
10 weeks
期刊介绍: Life Science Alliance is a global, open-access, editorially independent, and peer-reviewed journal launched by an alliance of EMBO Press, Rockefeller University Press, and Cold Spring Harbor Laboratory Press. Life Science Alliance is committed to rapid, fair, and transparent publication of valuable research from across all areas in the life sciences.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信