{"title":"不同寻常的盐对荷形各向异性钙钛矿粘土凝胶随时间变化行为的影响:双电层斥力的作用。","authors":"Yee-Kwong Leong, Peta Clode","doi":"10.1063/5.0241130","DOIUrl":null,"url":null,"abstract":"<p><p>Salt strengthened the bond formed and quickened the bonding process of 3-5 wt. % hectorite gels during the structural rejuvenation process. This even occurred at 0.002M KCl. Microstructure showed exfoliated, flexible platelet bonding in (+)edge-(-)face configurations. The display of prominent aging time-dependent behavior is due to the structural rejuvenation process being controlled by the electric double layer (EDL) repulsive force. Salt increased the lower energy paths to bonding in the (+)edge-(-)face configurations and weakened the EDL force to form stronger bonds. The Leong model time constant data supported the faster bonding process. In shear, the gels with a weakened EDL repulsive force caused by 0.01 and 0.1M KCl treatment were unable to display EDL force-control time-dependent behavior in the stepdown shear stress response. This situation was remedied by increasing the negative charge density of platelets with adsorbed P2O74-. The amount of P2O74- needed was higher at 0.1M KCl.</p>","PeriodicalId":15313,"journal":{"name":"Journal of Chemical Physics","volume":"161 22","pages":""},"PeriodicalIF":3.1000,"publicationDate":"2024-12-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Unusual salt effects on the time-dependent behavior of charge and shape anisotropic hectorite clay gels: Role of electric double layer (EDL) repulsive force.\",\"authors\":\"Yee-Kwong Leong, Peta Clode\",\"doi\":\"10.1063/5.0241130\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Salt strengthened the bond formed and quickened the bonding process of 3-5 wt. % hectorite gels during the structural rejuvenation process. This even occurred at 0.002M KCl. Microstructure showed exfoliated, flexible platelet bonding in (+)edge-(-)face configurations. The display of prominent aging time-dependent behavior is due to the structural rejuvenation process being controlled by the electric double layer (EDL) repulsive force. Salt increased the lower energy paths to bonding in the (+)edge-(-)face configurations and weakened the EDL force to form stronger bonds. The Leong model time constant data supported the faster bonding process. In shear, the gels with a weakened EDL repulsive force caused by 0.01 and 0.1M KCl treatment were unable to display EDL force-control time-dependent behavior in the stepdown shear stress response. This situation was remedied by increasing the negative charge density of platelets with adsorbed P2O74-. The amount of P2O74- needed was higher at 0.1M KCl.</p>\",\"PeriodicalId\":15313,\"journal\":{\"name\":\"Journal of Chemical Physics\",\"volume\":\"161 22\",\"pages\":\"\"},\"PeriodicalIF\":3.1000,\"publicationDate\":\"2024-12-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Chemical Physics\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://doi.org/10.1063/5.0241130\",\"RegionNum\":2,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"CHEMISTRY, PHYSICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Chemical Physics","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1063/5.0241130","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
Unusual salt effects on the time-dependent behavior of charge and shape anisotropic hectorite clay gels: Role of electric double layer (EDL) repulsive force.
Salt strengthened the bond formed and quickened the bonding process of 3-5 wt. % hectorite gels during the structural rejuvenation process. This even occurred at 0.002M KCl. Microstructure showed exfoliated, flexible platelet bonding in (+)edge-(-)face configurations. The display of prominent aging time-dependent behavior is due to the structural rejuvenation process being controlled by the electric double layer (EDL) repulsive force. Salt increased the lower energy paths to bonding in the (+)edge-(-)face configurations and weakened the EDL force to form stronger bonds. The Leong model time constant data supported the faster bonding process. In shear, the gels with a weakened EDL repulsive force caused by 0.01 and 0.1M KCl treatment were unable to display EDL force-control time-dependent behavior in the stepdown shear stress response. This situation was remedied by increasing the negative charge density of platelets with adsorbed P2O74-. The amount of P2O74- needed was higher at 0.1M KCl.
期刊介绍:
The Journal of Chemical Physics publishes quantitative and rigorous science of long-lasting value in methods and applications of chemical physics. The Journal also publishes brief Communications of significant new findings, Perspectives on the latest advances in the field, and Special Topic issues. The Journal focuses on innovative research in experimental and theoretical areas of chemical physics, including spectroscopy, dynamics, kinetics, statistical mechanics, and quantum mechanics. In addition, topical areas such as polymers, soft matter, materials, surfaces/interfaces, and systems of biological relevance are of increasing importance.
Topical coverage includes:
Theoretical Methods and Algorithms
Advanced Experimental Techniques
Atoms, Molecules, and Clusters
Liquids, Glasses, and Crystals
Surfaces, Interfaces, and Materials
Polymers and Soft Matter
Biological Molecules and Networks.