间充质干细胞膜衍生复合系统用于增强金属有机框架纳米粒子的肿瘤治疗功效

IF 3.8 4区 工程技术 Q1 BIOCHEMICAL RESEARCH METHODS
Ying Tong, Meng Gao, Yingli Luo
{"title":"间充质干细胞膜衍生复合系统用于增强金属有机框架纳米粒子的肿瘤治疗功效","authors":"Ying Tong,&nbsp;Meng Gao,&nbsp;Yingli Luo","doi":"10.1049/nbt2/1069307","DOIUrl":null,"url":null,"abstract":"<div>\n <p>Mesenchymal stem cell (MSC) membrane-coated metal–organic frameworks (MOFs) represent an innovative approach to enhance the uptake and therapeutic efficacy of copper-based MOFs (Cu-MOFs) in tumor cells. By leveraging the natural homing abilities and biocompatibility of MSC membranes, Cu-MOFs can be effectively targeted to tumor sites, promoting increased cellular uptake. This coating not only facilitates superior internalization by cancer cells but also augments the therapeutic outcomes due to the enhanced delivery of copper ions. In vitro studies demonstrate that MSC membrane-coated Cu-MOFs (MSC-Cu-MOFs) significantly improve the cytotoxic effects on tumor cells compared to uncoated Cu-MOFs. This novel strategy presents a promising avenue for advancing the precision and effectiveness of cancer treatment modalities, showcasing potential for clinical applications in oncology.</p>\n </div>","PeriodicalId":13393,"journal":{"name":"IET nanobiotechnology","volume":"2024 1","pages":""},"PeriodicalIF":3.8000,"publicationDate":"2024-12-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11637620/pdf/","citationCount":"0","resultStr":"{\"title\":\"Mesenchymal Stem Cell Membrane-Derived Composite System for Enhancing the Tumor Treatment Efficacy of Metal–Organic Framework Nanoparticles\",\"authors\":\"Ying Tong,&nbsp;Meng Gao,&nbsp;Yingli Luo\",\"doi\":\"10.1049/nbt2/1069307\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div>\\n <p>Mesenchymal stem cell (MSC) membrane-coated metal–organic frameworks (MOFs) represent an innovative approach to enhance the uptake and therapeutic efficacy of copper-based MOFs (Cu-MOFs) in tumor cells. By leveraging the natural homing abilities and biocompatibility of MSC membranes, Cu-MOFs can be effectively targeted to tumor sites, promoting increased cellular uptake. This coating not only facilitates superior internalization by cancer cells but also augments the therapeutic outcomes due to the enhanced delivery of copper ions. In vitro studies demonstrate that MSC membrane-coated Cu-MOFs (MSC-Cu-MOFs) significantly improve the cytotoxic effects on tumor cells compared to uncoated Cu-MOFs. This novel strategy presents a promising avenue for advancing the precision and effectiveness of cancer treatment modalities, showcasing potential for clinical applications in oncology.</p>\\n </div>\",\"PeriodicalId\":13393,\"journal\":{\"name\":\"IET nanobiotechnology\",\"volume\":\"2024 1\",\"pages\":\"\"},\"PeriodicalIF\":3.8000,\"publicationDate\":\"2024-12-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11637620/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IET nanobiotechnology\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1049/nbt2/1069307\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"BIOCHEMICAL RESEARCH METHODS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IET nanobiotechnology","FirstCategoryId":"5","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1049/nbt2/1069307","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMICAL RESEARCH METHODS","Score":null,"Total":0}
引用次数: 0

摘要

本文章由计算机程序翻译,如有差异,请以英文原文为准。

Mesenchymal Stem Cell Membrane-Derived Composite System for Enhancing the Tumor Treatment Efficacy of Metal–Organic Framework Nanoparticles

Mesenchymal Stem Cell Membrane-Derived Composite System for Enhancing the Tumor Treatment Efficacy of Metal–Organic Framework Nanoparticles

Mesenchymal stem cell (MSC) membrane-coated metal–organic frameworks (MOFs) represent an innovative approach to enhance the uptake and therapeutic efficacy of copper-based MOFs (Cu-MOFs) in tumor cells. By leveraging the natural homing abilities and biocompatibility of MSC membranes, Cu-MOFs can be effectively targeted to tumor sites, promoting increased cellular uptake. This coating not only facilitates superior internalization by cancer cells but also augments the therapeutic outcomes due to the enhanced delivery of copper ions. In vitro studies demonstrate that MSC membrane-coated Cu-MOFs (MSC-Cu-MOFs) significantly improve the cytotoxic effects on tumor cells compared to uncoated Cu-MOFs. This novel strategy presents a promising avenue for advancing the precision and effectiveness of cancer treatment modalities, showcasing potential for clinical applications in oncology.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
IET nanobiotechnology
IET nanobiotechnology 工程技术-纳米科技
CiteScore
6.20
自引率
4.30%
发文量
34
审稿时长
1 months
期刊介绍: Electrical and electronic engineers have a long and illustrious history of contributing new theories and technologies to the biomedical sciences. This includes the cable theory for understanding the transmission of electrical signals in nerve axons and muscle fibres; dielectric techniques that advanced the understanding of cell membrane structures and membrane ion channels; electron and atomic force microscopy for investigating cells at the molecular level. Other engineering disciplines, along with contributions from the biological, chemical, materials and physical sciences, continue to provide groundbreaking contributions to this subject at the molecular and submolecular level. Our subject now extends from single molecule measurements using scanning probe techniques, through to interactions between cells and microstructures, micro- and nano-fluidics, and aspects of lab-on-chip technologies. The primary aim of IET Nanobiotechnology is to provide a vital resource for academic and industrial researchers operating in this exciting cross-disciplinary activity. We can only achieve this by publishing cutting edge research papers and expert review articles from the international engineering and scientific community. To attract such contributions we will exercise a commitment to our authors by ensuring that their manuscripts receive rapid constructive peer opinions and feedback across interdisciplinary boundaries. IET Nanobiotechnology covers all aspects of research and emerging technologies including, but not limited to: Fundamental theories and concepts applied to biomedical-related devices and methods at the micro- and nano-scale (including methods that employ electrokinetic, electrohydrodynamic, and optical trapping techniques) Micromachining and microfabrication tools and techniques applied to the top-down approach to nanobiotechnology Nanomachining and nanofabrication tools and techniques directed towards biomedical and biotechnological applications (e.g. applications of atomic force microscopy, scanning probe microscopy and related tools) Colloid chemistry applied to nanobiotechnology (e.g. cosmetics, suntan lotions, bio-active nanoparticles) Biosynthesis (also known as green synthesis) of nanoparticles; to be considered for publication, research papers in this area must be directed principally towards biomedical research and especially if they encompass in vivo models or proofs of concept. We welcome papers that are application-orientated or offer new concepts of substantial biomedical importance Techniques for probing cell physiology, cell adhesion sites and cell-cell communication Molecular self-assembly, including concepts of supramolecular chemistry, molecular recognition, and DNA nanotechnology Societal issues such as health and the environment Special issues. Call for papers: Smart Nanobiosensors for Next-generation Biomedical Applications - https://digital-library.theiet.org/files/IET_NBT_CFP_SNNBA.pdf Selected extended papers from the International conference of the 19th Asian BioCeramic Symposium - https://digital-library.theiet.org/files/IET_NBT_CFP_ABS.pdf
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信