{"title":"Atractylenolide-III restrains cardiac fibrosis after myocardial infarction via suppression of the RhoA/ROCK1 and ERK1/2 pathway.","authors":"Xuelian Li, Xianjie Zhu, Shijiu Jiang, Wenling Yang, Fan Zhang, Xiaopeng Guo, Yumiao Wei","doi":"10.1016/j.intimp.2024.113825","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>Cardiac fibrosis, a critical factor in myocardial remodeling post-myocardial infarction (MI), can advance heart failure progression. Atractylenolide III (ATL-III), derived from Atractylodes lancea, has recognized antioxidant and anti-inflammatory effects; however, its influence on cardiac fibrosis remains unclear.</p><p><strong>Methods: </strong>MI was induced in mice by permanent ligation of the left anterior descending (LAD) coronary artery, followed by 2 weeks of ATL-III or dimethyl sulfoxide (DMSO) treatment. Cardiac fibrosis was assessed by echocardiography, tissue histology, and serum biomarkers of myocardial injury. In vitro, the effects of ATL-III on cardiac fibroblast (CF) proliferation and collagen deposition were evaluated using immunofluorescence, 5-Ethynyl-2'-deoxyuridine (EdU), and western blot techniques. Network pharmacology and molecular docking identified potential ATL-III targets.</p><p><strong>Results: </strong>ATL-III treatment significantly improved cardiac function, as evidenced by increased ejection fraction (EF) and fractional shortening (FS) and reduced left ventricular dilation. Histological analysis revealed decreased fibrotic areas in ATL-III-treated mice, along with reduced expression of fibrosis markers α-SMA and Collagen I. ATL-III also alleviated oxidative stress by reducing reactive oxygen species (ROS) and malondialdehyde (MDA) levels while increasing superoxide dismutase (SOD) activity. Furthermore, ATL-III suppressed inflammation, decreasing TNF-α, IL-6, and IL-1β protein and mRNA levels. In vitro, ATL-III inhibited TGF-β1-induced CF proliferation, migration, and differentiation, reducing the expression of fibrotic markers. Mechanistically, ATL-III suppressed the RhoA/ROCK1 and ERK1/2 signaling pathways, as confirmed by molecular docking and pathway analysis.</p><p><strong>Conclusion: </strong>ATL-III demonstrates therapeutic potential in mitigating post-MI cardiac fibrosis by reducing oxidative stress, inflammation, and CF activation. These findings highlight ATL-III as a promising candidate for the treatment of cardiac fibrosis and associated heart failure.</p>","PeriodicalId":13859,"journal":{"name":"International immunopharmacology","volume":"145 ","pages":"113825"},"PeriodicalIF":4.8000,"publicationDate":"2025-01-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International immunopharmacology","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1016/j.intimp.2024.113825","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/12/12 0:00:00","PubModel":"Epub","JCR":"Q2","JCRName":"IMMUNOLOGY","Score":null,"Total":0}
Atractylenolide-III restrains cardiac fibrosis after myocardial infarction via suppression of the RhoA/ROCK1 and ERK1/2 pathway.
Background: Cardiac fibrosis, a critical factor in myocardial remodeling post-myocardial infarction (MI), can advance heart failure progression. Atractylenolide III (ATL-III), derived from Atractylodes lancea, has recognized antioxidant and anti-inflammatory effects; however, its influence on cardiac fibrosis remains unclear.
Methods: MI was induced in mice by permanent ligation of the left anterior descending (LAD) coronary artery, followed by 2 weeks of ATL-III or dimethyl sulfoxide (DMSO) treatment. Cardiac fibrosis was assessed by echocardiography, tissue histology, and serum biomarkers of myocardial injury. In vitro, the effects of ATL-III on cardiac fibroblast (CF) proliferation and collagen deposition were evaluated using immunofluorescence, 5-Ethynyl-2'-deoxyuridine (EdU), and western blot techniques. Network pharmacology and molecular docking identified potential ATL-III targets.
Results: ATL-III treatment significantly improved cardiac function, as evidenced by increased ejection fraction (EF) and fractional shortening (FS) and reduced left ventricular dilation. Histological analysis revealed decreased fibrotic areas in ATL-III-treated mice, along with reduced expression of fibrosis markers α-SMA and Collagen I. ATL-III also alleviated oxidative stress by reducing reactive oxygen species (ROS) and malondialdehyde (MDA) levels while increasing superoxide dismutase (SOD) activity. Furthermore, ATL-III suppressed inflammation, decreasing TNF-α, IL-6, and IL-1β protein and mRNA levels. In vitro, ATL-III inhibited TGF-β1-induced CF proliferation, migration, and differentiation, reducing the expression of fibrotic markers. Mechanistically, ATL-III suppressed the RhoA/ROCK1 and ERK1/2 signaling pathways, as confirmed by molecular docking and pathway analysis.
Conclusion: ATL-III demonstrates therapeutic potential in mitigating post-MI cardiac fibrosis by reducing oxidative stress, inflammation, and CF activation. These findings highlight ATL-III as a promising candidate for the treatment of cardiac fibrosis and associated heart failure.
期刊介绍:
International Immunopharmacology is the primary vehicle for the publication of original research papers pertinent to the overlapping areas of immunology, pharmacology, cytokine biology, immunotherapy, immunopathology and immunotoxicology. Review articles that encompass these subjects are also welcome.
The subject material appropriate for submission includes:
• Clinical studies employing immunotherapy of any type including the use of: bacterial and chemical agents; thymic hormones, interferon, lymphokines, etc., in transplantation and diseases such as cancer, immunodeficiency, chronic infection and allergic, inflammatory or autoimmune disorders.
• Studies on the mechanisms of action of these agents for specific parameters of immune competence as well as the overall clinical state.
• Pre-clinical animal studies and in vitro studies on mechanisms of action with immunopotentiators, immunomodulators, immunoadjuvants and other pharmacological agents active on cells participating in immune or allergic responses.
• Pharmacological compounds, microbial products and toxicological agents that affect the lymphoid system, and their mechanisms of action.
• Agents that activate genes or modify transcription and translation within the immune response.
• Substances activated, generated, or released through immunologic or related pathways that are pharmacologically active.
• Production, function and regulation of cytokines and their receptors.
• Classical pharmacological studies on the effects of chemokines and bioactive factors released during immunological reactions.