制备牛肉排的魏氏假单胞菌和溶血性大球菌在双物种生物膜中的相互作用和交叉污染潜力。

IF 4.5 1区 农林科学 Q1 BIOTECHNOLOGY & APPLIED MICROBIOLOGY
Food microbiology Pub Date : 2025-04-01 Epub Date: 2024-11-28 DOI:10.1016/j.fm.2024.104685
Wendi Zhang, Yunhao Ma, Yong Xie, Xiaoyan Liu, Lijun Tan, Jinsong Zhao, Yongsheng Ni, Zhaoming Wang, Cong Li, Baocai Xu
{"title":"制备牛肉排的魏氏假单胞菌和溶血性大球菌在双物种生物膜中的相互作用和交叉污染潜力。","authors":"Wendi Zhang, Yunhao Ma, Yong Xie, Xiaoyan Liu, Lijun Tan, Jinsong Zhao, Yongsheng Ni, Zhaoming Wang, Cong Li, Baocai Xu","doi":"10.1016/j.fm.2024.104685","DOIUrl":null,"url":null,"abstract":"<p><p>This study evaluated the interactions between single or dual-species biofilms formed by dominant spoilage bacteria P. weihenstephanensis and M. caseolyticus isolated from refrigerated, spoilage prepared beef steaks at 4 °C and elucidated the interactive behavior of biofilm development in dual species. In addition, the relationship between biofilm formation capacity and cross-contamination was analyzed by simulating surface to food contact transfer. The results showed that the two species exhibited synergism as biofilms developed, which was the main mode of interaction observed. Under aerobic conditions, Pseudomonas weihenstephanensis and Macrococcus caseolyticus co-cultured for 96 h showed obvious biofilm formation ability, resulting in greater cross-contamination. Scanning electron microscopy and Confocal laser scanning microscopy showed the formation of flattened dense biofilms in the co-culture. The significant increase in Fe content and decrease in siderophore content of the dual-species biofilm as determined by ICP-MS was attributed to respiratory inhibition resulting in a decrease in the transcription of genes regulating the two-component regulatory system of Macrococcus tyrolyticus SrrAB and an increase in the expression of cytoplasmic hydrolase leading to the rupture of the release of hemoglobin to provide a source of iron for P. weihenstephanensis. The increase of heme content in the supernatant of dual-species and the results of RT-qPCR showed that the gene expression of the heme transport system of P. weihenstephanensis was significantly up-regulated and the siderophore gene expression was decreased, which further revealed that P. weihenstephanensis preferentially uses the heme uptake system to take up the iron source provided by M. caseolyticus for P. weihenstephanensis. Overall, our results provide insight into the complex dynamics of biofilms formed by P. weihenstephanensis and M. caseolyticus, emphasizing that the iron reaction pathway may be a key factor influencing the growth of P. weihenstephanensis biofilms, and that these results will provide a theoretical basis for the control of spoilage of refrigerated foods.</p>","PeriodicalId":12399,"journal":{"name":"Food microbiology","volume":"127 ","pages":"104685"},"PeriodicalIF":4.5000,"publicationDate":"2025-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Interaction and cross-contamination potential of prepared beef steak isolates Pseudomonas weihenstephanensis and Macrococcus caseolyticus in biofilms of dual-species.\",\"authors\":\"Wendi Zhang, Yunhao Ma, Yong Xie, Xiaoyan Liu, Lijun Tan, Jinsong Zhao, Yongsheng Ni, Zhaoming Wang, Cong Li, Baocai Xu\",\"doi\":\"10.1016/j.fm.2024.104685\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>This study evaluated the interactions between single or dual-species biofilms formed by dominant spoilage bacteria P. weihenstephanensis and M. caseolyticus isolated from refrigerated, spoilage prepared beef steaks at 4 °C and elucidated the interactive behavior of biofilm development in dual species. In addition, the relationship between biofilm formation capacity and cross-contamination was analyzed by simulating surface to food contact transfer. The results showed that the two species exhibited synergism as biofilms developed, which was the main mode of interaction observed. Under aerobic conditions, Pseudomonas weihenstephanensis and Macrococcus caseolyticus co-cultured for 96 h showed obvious biofilm formation ability, resulting in greater cross-contamination. Scanning electron microscopy and Confocal laser scanning microscopy showed the formation of flattened dense biofilms in the co-culture. The significant increase in Fe content and decrease in siderophore content of the dual-species biofilm as determined by ICP-MS was attributed to respiratory inhibition resulting in a decrease in the transcription of genes regulating the two-component regulatory system of Macrococcus tyrolyticus SrrAB and an increase in the expression of cytoplasmic hydrolase leading to the rupture of the release of hemoglobin to provide a source of iron for P. weihenstephanensis. The increase of heme content in the supernatant of dual-species and the results of RT-qPCR showed that the gene expression of the heme transport system of P. weihenstephanensis was significantly up-regulated and the siderophore gene expression was decreased, which further revealed that P. weihenstephanensis preferentially uses the heme uptake system to take up the iron source provided by M. caseolyticus for P. weihenstephanensis. Overall, our results provide insight into the complex dynamics of biofilms formed by P. weihenstephanensis and M. caseolyticus, emphasizing that the iron reaction pathway may be a key factor influencing the growth of P. weihenstephanensis biofilms, and that these results will provide a theoretical basis for the control of spoilage of refrigerated foods.</p>\",\"PeriodicalId\":12399,\"journal\":{\"name\":\"Food microbiology\",\"volume\":\"127 \",\"pages\":\"104685\"},\"PeriodicalIF\":4.5000,\"publicationDate\":\"2025-04-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Food microbiology\",\"FirstCategoryId\":\"97\",\"ListUrlMain\":\"https://doi.org/10.1016/j.fm.2024.104685\",\"RegionNum\":1,\"RegionCategory\":\"农林科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2024/11/28 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q1\",\"JCRName\":\"BIOTECHNOLOGY & APPLIED MICROBIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Food microbiology","FirstCategoryId":"97","ListUrlMain":"https://doi.org/10.1016/j.fm.2024.104685","RegionNum":1,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/11/28 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"BIOTECHNOLOGY & APPLIED MICROBIOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

本研究评估了从4°C冷藏变质牛排中分离的优势腐败菌P. weihenstephanensis和M. caseolyticus形成的单种或双种生物膜之间的相互作用,并阐明了双种生物膜发育的相互作用行为。此外,通过模拟表面与食物的接触转移,分析了生物膜形成能力与交叉污染的关系。结果表明,随着生物膜的发育,两种植物表现出协同作用,这是两种植物相互作用的主要方式。在好氧条件下,魏氏假单胞菌与溶干酪巨球菌共培养96 h,生物成膜能力明显,交叉污染较大。扫描电镜和激光共聚焦显微镜显示,共培养过程中形成扁平致密的生物膜。ICP-MS测定双种生物膜铁含量显著升高,铁载体含量显著降低,这是由于呼吸抑制导致酪化巨球菌SrrAB双组分调控系统调控基因转录减少,细胞质水解酶表达增加,导致血红蛋白释放破裂,无法为P. weihenstephanensis提供铁来源。双种上清中血红素含量的增加和RT-qPCR结果表明,威亨斯特凡纳豆血红素转运系统基因表达量显著上调,铁载体基因表达量降低,进一步揭示了威亨斯特凡纳豆优先利用血红素摄取系统来吸收溶caseticus为威亨斯特凡纳豆提供的铁源。综上所述,我们的研究结果揭示了P. weihenstephanensis和M. caseolyticus形成生物膜的复杂动力学,强调铁反应途径可能是影响P. weihenstephanensis生物膜生长的关键因素,这些结果将为控制冷藏食品的腐败提供理论依据。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Interaction and cross-contamination potential of prepared beef steak isolates Pseudomonas weihenstephanensis and Macrococcus caseolyticus in biofilms of dual-species.

This study evaluated the interactions between single or dual-species biofilms formed by dominant spoilage bacteria P. weihenstephanensis and M. caseolyticus isolated from refrigerated, spoilage prepared beef steaks at 4 °C and elucidated the interactive behavior of biofilm development in dual species. In addition, the relationship between biofilm formation capacity and cross-contamination was analyzed by simulating surface to food contact transfer. The results showed that the two species exhibited synergism as biofilms developed, which was the main mode of interaction observed. Under aerobic conditions, Pseudomonas weihenstephanensis and Macrococcus caseolyticus co-cultured for 96 h showed obvious biofilm formation ability, resulting in greater cross-contamination. Scanning electron microscopy and Confocal laser scanning microscopy showed the formation of flattened dense biofilms in the co-culture. The significant increase in Fe content and decrease in siderophore content of the dual-species biofilm as determined by ICP-MS was attributed to respiratory inhibition resulting in a decrease in the transcription of genes regulating the two-component regulatory system of Macrococcus tyrolyticus SrrAB and an increase in the expression of cytoplasmic hydrolase leading to the rupture of the release of hemoglobin to provide a source of iron for P. weihenstephanensis. The increase of heme content in the supernatant of dual-species and the results of RT-qPCR showed that the gene expression of the heme transport system of P. weihenstephanensis was significantly up-regulated and the siderophore gene expression was decreased, which further revealed that P. weihenstephanensis preferentially uses the heme uptake system to take up the iron source provided by M. caseolyticus for P. weihenstephanensis. Overall, our results provide insight into the complex dynamics of biofilms formed by P. weihenstephanensis and M. caseolyticus, emphasizing that the iron reaction pathway may be a key factor influencing the growth of P. weihenstephanensis biofilms, and that these results will provide a theoretical basis for the control of spoilage of refrigerated foods.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Food microbiology
Food microbiology 工程技术-生物工程与应用微生物
CiteScore
11.30
自引率
3.80%
发文量
179
审稿时长
44 days
期刊介绍: Food Microbiology publishes original research articles, short communications, review papers, letters, news items and book reviews dealing with all aspects of the microbiology of foods. The editors aim to publish manuscripts of the highest quality which are both relevant and applicable to the broad field covered by the journal. Studies must be novel, have a clear connection to food microbiology, and be of general interest to the international community of food microbiologists. The editors make every effort to ensure rapid and fair reviews, resulting in timely publication of accepted manuscripts.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信