{"title":"3D printed PGCL@PLA/10CSPL composite scaffolds loaded with fibronectin 1 for intervertebral disc degeneration treatment.","authors":"Weilin Zhang, Siyuan Chen, Shengbang Huang, Zhencong Li, Zhongwei Wang, Zhiwen Dai, Jinguo Liang, Hongrui Rong, Qianqian Ouyang, Weixiong Guo, Yen Wei, Jinsong Wei","doi":"10.1088/1758-5090/ad998f","DOIUrl":null,"url":null,"abstract":"<p><p>Restoration of disc height and biomechanical function is essential for intervertebral disc degeneration (IDD) treatment. Removing abnormal nucleus pulposus (NP) tissue is an important step to facilitate bony fusion during the healing process. We analyzed publicly available single-cell transcriptome data for human normal and degenerative NP to identify genes associated with NP degeneration. A novel poly(glycolide-co-caprolactone)@polylactide (PLA)-b-aniline pentamer (AP)-b-PLA/chitosan-<i>ϵ</i>-polylysine (PGCL@1PAP/10CSPL) scaffold with good biocompatibility and electroactivity was designed and fabricated as an implant for IDD treatment using 3D printing technology. The PGCL@1PAP/10CSPL scaffold exhibited superior hydrophilicity, mechanical properties, cytocompatibility, and antibacterial activity compared to PGCL. Fibronectin 1 (FN1), identified from single-cell transcriptome analysis, was loaded into the PGCL@1PAP/10CSPL scaffold to accelerate the abnormal NP degeneration.<i>In vitro</i>and<i>in vivo</i>experiments indicated that the PGCL@1PAP/10CSPL-FN1 scaffold enhanced osteogenic differentiation, promoted angiogenesis, and facilitated the removal of damaged disc tissue. This study introduces a novel implant system with desirable mechanical strength and unique bone-promoting and vascularizing properties for lumbar interbody fusion in IDD treatment.</p>","PeriodicalId":8964,"journal":{"name":"Biofabrication","volume":"17 1","pages":""},"PeriodicalIF":8.2000,"publicationDate":"2024-12-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biofabrication","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1088/1758-5090/ad998f","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, BIOMEDICAL","Score":null,"Total":0}
3D printed PGCL@PLA/10CSPL composite scaffolds loaded with fibronectin 1 for intervertebral disc degeneration treatment.
Restoration of disc height and biomechanical function is essential for intervertebral disc degeneration (IDD) treatment. Removing abnormal nucleus pulposus (NP) tissue is an important step to facilitate bony fusion during the healing process. We analyzed publicly available single-cell transcriptome data for human normal and degenerative NP to identify genes associated with NP degeneration. A novel poly(glycolide-co-caprolactone)@polylactide (PLA)-b-aniline pentamer (AP)-b-PLA/chitosan-ϵ-polylysine (PGCL@1PAP/10CSPL) scaffold with good biocompatibility and electroactivity was designed and fabricated as an implant for IDD treatment using 3D printing technology. The PGCL@1PAP/10CSPL scaffold exhibited superior hydrophilicity, mechanical properties, cytocompatibility, and antibacterial activity compared to PGCL. Fibronectin 1 (FN1), identified from single-cell transcriptome analysis, was loaded into the PGCL@1PAP/10CSPL scaffold to accelerate the abnormal NP degeneration.In vitroandin vivoexperiments indicated that the PGCL@1PAP/10CSPL-FN1 scaffold enhanced osteogenic differentiation, promoted angiogenesis, and facilitated the removal of damaged disc tissue. This study introduces a novel implant system with desirable mechanical strength and unique bone-promoting and vascularizing properties for lumbar interbody fusion in IDD treatment.
期刊介绍:
Biofabrication is dedicated to advancing cutting-edge research on the utilization of cells, proteins, biological materials, and biomaterials as fundamental components for the construction of biological systems and/or therapeutic products. Additionally, it proudly serves as the official journal of the International Society for Biofabrication (ISBF).