CYP2D6 多态性在曲马多代谢中的作用与联合用药和超重有关。

IF 3.9 3区 医学 Q2 FOOD SCIENCE & TECHNOLOGY
Pierre-Jean Ferron, Romain Pelletier, Julie Massart, Celine Narjoz, Vinh-Hoang-Lan Julie Tran, Marie-Anne Loriot, Angéline Kernalleguen, Marie Zins, Sofiane Kab, Isabelle Morel, Bruno Clément, Thomas Gicquel, Brendan Le Daré
{"title":"CYP2D6 多态性在曲马多代谢中的作用与联合用药和超重有关。","authors":"Pierre-Jean Ferron, Romain Pelletier, Julie Massart, Celine Narjoz, Vinh-Hoang-Lan Julie Tran, Marie-Anne Loriot, Angéline Kernalleguen, Marie Zins, Sofiane Kab, Isabelle Morel, Bruno Clément, Thomas Gicquel, Brendan Le Daré","doi":"10.1016/j.fct.2024.115192","DOIUrl":null,"url":null,"abstract":"<p><p>Very few quantitative data exist on tramadol metabolites, which hampers our understanding of their role in efficacy and safety of tramadol. We aimed to provide quantitative data on tramadol and its 5 main metabolites in a patient cohort and to determine whether metabolite ratios can be predictive of a CYP2D6 metabolism phenotype. We also aimed to investigate the influence of co-medications and patient profile (BMI, glycemia, lipid levels) on tramadol metabolite ratios. Overall, 37 patient samples from the CONSTANCES cohort contained tramadol and its 5 metabolites. Mean concentrations found tramadol at 343.2 ± 223.2 μg/L, M1 at 62.4 ± 41.4 μg/L, M2 at 210.0 ± 272.3, M3 at 1.76 ± 3.0 μg/L, M4 at 1.8 ± 2.8 μg/L and M5 at 31.8 ± 28.4 μg/L. The most frequent CYP2D6 phenotype was extensive metabolizers (51.3%), followed by intermediate metabolizers (24.3%) and poor metabolizers (10.8%). CYP2D6-inhibiting co-medications impacted tramadol metabolism independently of CYP2D6 metabolism phenotype. Lipid parameters and glycemia were significantly associated with changes in tramadol metabolic ratios. Metabolic ratios are not sufficient to determine the CYP2D6 metabolic phenotype in patients. CYP2D6 inhibitors and obesity/NAFLD/diabetes impact tramadol metabolism. These factors are likely to impact the analgesic efficacy and safety profile of tramadol, justifying the need for further studies in this area.</p>","PeriodicalId":317,"journal":{"name":"Food and Chemical Toxicology","volume":" ","pages":"115192"},"PeriodicalIF":3.9000,"publicationDate":"2024-12-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Role of CYP2D6 polymorphisms in tramadol metabolism in a context of co-medications and overweight.\",\"authors\":\"Pierre-Jean Ferron, Romain Pelletier, Julie Massart, Celine Narjoz, Vinh-Hoang-Lan Julie Tran, Marie-Anne Loriot, Angéline Kernalleguen, Marie Zins, Sofiane Kab, Isabelle Morel, Bruno Clément, Thomas Gicquel, Brendan Le Daré\",\"doi\":\"10.1016/j.fct.2024.115192\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Very few quantitative data exist on tramadol metabolites, which hampers our understanding of their role in efficacy and safety of tramadol. We aimed to provide quantitative data on tramadol and its 5 main metabolites in a patient cohort and to determine whether metabolite ratios can be predictive of a CYP2D6 metabolism phenotype. We also aimed to investigate the influence of co-medications and patient profile (BMI, glycemia, lipid levels) on tramadol metabolite ratios. Overall, 37 patient samples from the CONSTANCES cohort contained tramadol and its 5 metabolites. Mean concentrations found tramadol at 343.2 ± 223.2 μg/L, M1 at 62.4 ± 41.4 μg/L, M2 at 210.0 ± 272.3, M3 at 1.76 ± 3.0 μg/L, M4 at 1.8 ± 2.8 μg/L and M5 at 31.8 ± 28.4 μg/L. The most frequent CYP2D6 phenotype was extensive metabolizers (51.3%), followed by intermediate metabolizers (24.3%) and poor metabolizers (10.8%). CYP2D6-inhibiting co-medications impacted tramadol metabolism independently of CYP2D6 metabolism phenotype. Lipid parameters and glycemia were significantly associated with changes in tramadol metabolic ratios. Metabolic ratios are not sufficient to determine the CYP2D6 metabolic phenotype in patients. CYP2D6 inhibitors and obesity/NAFLD/diabetes impact tramadol metabolism. These factors are likely to impact the analgesic efficacy and safety profile of tramadol, justifying the need for further studies in this area.</p>\",\"PeriodicalId\":317,\"journal\":{\"name\":\"Food and Chemical Toxicology\",\"volume\":\" \",\"pages\":\"115192\"},\"PeriodicalIF\":3.9000,\"publicationDate\":\"2024-12-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Food and Chemical Toxicology\",\"FirstCategoryId\":\"97\",\"ListUrlMain\":\"https://doi.org/10.1016/j.fct.2024.115192\",\"RegionNum\":3,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"FOOD SCIENCE & TECHNOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Food and Chemical Toxicology","FirstCategoryId":"97","ListUrlMain":"https://doi.org/10.1016/j.fct.2024.115192","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"FOOD SCIENCE & TECHNOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

本文章由计算机程序翻译,如有差异,请以英文原文为准。
Role of CYP2D6 polymorphisms in tramadol metabolism in a context of co-medications and overweight.

Very few quantitative data exist on tramadol metabolites, which hampers our understanding of their role in efficacy and safety of tramadol. We aimed to provide quantitative data on tramadol and its 5 main metabolites in a patient cohort and to determine whether metabolite ratios can be predictive of a CYP2D6 metabolism phenotype. We also aimed to investigate the influence of co-medications and patient profile (BMI, glycemia, lipid levels) on tramadol metabolite ratios. Overall, 37 patient samples from the CONSTANCES cohort contained tramadol and its 5 metabolites. Mean concentrations found tramadol at 343.2 ± 223.2 μg/L, M1 at 62.4 ± 41.4 μg/L, M2 at 210.0 ± 272.3, M3 at 1.76 ± 3.0 μg/L, M4 at 1.8 ± 2.8 μg/L and M5 at 31.8 ± 28.4 μg/L. The most frequent CYP2D6 phenotype was extensive metabolizers (51.3%), followed by intermediate metabolizers (24.3%) and poor metabolizers (10.8%). CYP2D6-inhibiting co-medications impacted tramadol metabolism independently of CYP2D6 metabolism phenotype. Lipid parameters and glycemia were significantly associated with changes in tramadol metabolic ratios. Metabolic ratios are not sufficient to determine the CYP2D6 metabolic phenotype in patients. CYP2D6 inhibitors and obesity/NAFLD/diabetes impact tramadol metabolism. These factors are likely to impact the analgesic efficacy and safety profile of tramadol, justifying the need for further studies in this area.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Food and Chemical Toxicology
Food and Chemical Toxicology 工程技术-毒理学
CiteScore
10.90
自引率
4.70%
发文量
651
审稿时长
31 days
期刊介绍: Food and Chemical Toxicology (FCT), an internationally renowned journal, that publishes original research articles and reviews on toxic effects, in animals and humans, of natural or synthetic chemicals occurring in the human environment with particular emphasis on food, drugs, and chemicals, including agricultural and industrial safety, and consumer product safety. Areas such as safety evaluation of novel foods and ingredients, biotechnologically-derived products, and nanomaterials are included in the scope of the journal. FCT also encourages submission of papers on inter-relationships between nutrition and toxicology and on in vitro techniques, particularly those fostering the 3 Rs. The principal aim of the journal is to publish high impact, scholarly work and to serve as a multidisciplinary forum for research in toxicology. Papers submitted will be judged on the basis of scientific originality and contribution to the field, quality and subject matter. Studies should address at least one of the following: -Adverse physiological/biochemical, or pathological changes induced by specific defined substances -New techniques for assessing potential toxicity, including molecular biology -Mechanisms underlying toxic phenomena -Toxicological examinations of specific chemicals or consumer products, both those showing adverse effects and those demonstrating safety, that meet current standards of scientific acceptability. Authors must clearly and briefly identify what novel toxic effect (s) or toxic mechanism (s) of the chemical are being reported and what their significance is in the abstract. Furthermore, sufficient doses should be included in order to provide information on NOAEL/LOAEL values.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信