José Guadalupe Rosas Jiménez, Balázs Fábián, Gerhard Hummer
{"title":"Faster Sampling in Molecular Dynamics Simulations with TIP3P-F Water.","authors":"José Guadalupe Rosas Jiménez, Balázs Fábián, Gerhard Hummer","doi":"10.1021/acs.jctc.4c00990","DOIUrl":null,"url":null,"abstract":"<p><p>The need for short time steps currently limits routine atomistic molecular dynamics (MD) simulations to the microsecond time scale. For long time steps, the numerical integration of the equations of motion becomes unstable, resulting in catastrophic crashes. Here, we combine mass repartitioning and rescaling to construct a water model that increases the sampling efficiency in biomolecular simulations without compromising integration stability and with preserved structural and thermodynamic properties. The resulting \"fast water\" is then used with a time step as before in combination with standard force fields. The reduced water viscosity and faster diffusion result in proportionally faster sampling of the larger-scale motions in the conformation space of both solute and solvent. We illustrate this approach by developing TIP3P-F based on the popular TIP3P model of water. A roughly 2-fold boost in the sampling efficiency at minimal cost in accuracy is substantial and helps lower the energy impact of large-scale MD simulations. The approach is general and can readily be applied to other water models and different types of solvents.</p>","PeriodicalId":45,"journal":{"name":"Journal of Chemical Theory and Computation","volume":" ","pages":"11068-11081"},"PeriodicalIF":5.7000,"publicationDate":"2024-12-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Chemical Theory and Computation","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1021/acs.jctc.4c00990","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/12/12 0:00:00","PubModel":"Epub","JCR":"Q2","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
Faster Sampling in Molecular Dynamics Simulations with TIP3P-F Water.
The need for short time steps currently limits routine atomistic molecular dynamics (MD) simulations to the microsecond time scale. For long time steps, the numerical integration of the equations of motion becomes unstable, resulting in catastrophic crashes. Here, we combine mass repartitioning and rescaling to construct a water model that increases the sampling efficiency in biomolecular simulations without compromising integration stability and with preserved structural and thermodynamic properties. The resulting "fast water" is then used with a time step as before in combination with standard force fields. The reduced water viscosity and faster diffusion result in proportionally faster sampling of the larger-scale motions in the conformation space of both solute and solvent. We illustrate this approach by developing TIP3P-F based on the popular TIP3P model of water. A roughly 2-fold boost in the sampling efficiency at minimal cost in accuracy is substantial and helps lower the energy impact of large-scale MD simulations. The approach is general and can readily be applied to other water models and different types of solvents.
期刊介绍:
The Journal of Chemical Theory and Computation invites new and original contributions with the understanding that, if accepted, they will not be published elsewhere. Papers reporting new theories, methodology, and/or important applications in quantum electronic structure, molecular dynamics, and statistical mechanics are appropriate for submission to this Journal. Specific topics include advances in or applications of ab initio quantum mechanics, density functional theory, design and properties of new materials, surface science, Monte Carlo simulations, solvation models, QM/MM calculations, biomolecular structure prediction, and molecular dynamics in the broadest sense including gas-phase dynamics, ab initio dynamics, biomolecular dynamics, and protein folding. The Journal does not consider papers that are straightforward applications of known methods including DFT and molecular dynamics. The Journal favors submissions that include advances in theory or methodology with applications to compelling problems.