先进的直接回收技术使废锂离子电池获得二次使用寿命

IF 18.9 1区 材料科学 Q1 CHEMISTRY, PHYSICAL
Ji Shen, Miaomiao Zhou, Wei Liu, Yiliang Shi, Wenhao Tang, Yirui Deng, Ruiping Liu, Yinze Zuo, Jiujun Zhang
{"title":"先进的直接回收技术使废锂离子电池获得二次使用寿命","authors":"Ji Shen, Miaomiao Zhou, Wei Liu, Yiliang Shi, Wenhao Tang, Yirui Deng, Ruiping Liu, Yinze Zuo, Jiujun Zhang","doi":"10.1016/j.ensm.2024.103964","DOIUrl":null,"url":null,"abstract":"With the emergence of the energy crisis and the rise of human environmental awareness, lithium-ion batteries (LIBs), as a new type of energy storage device, are widely used in electric vehicles (EVs), mobile electronic products and stationary energy storage devices. The demand for LIBs has dramatically increased in recent years, leading to a shortage of raw materials for LIBs and a large number of retired LIBs. Therefore, it is particularly important to recycle spent LIBs. Compared with pyrometallurgy and hydrometallurgy, direct recycling, as a more advanced technology, focuses on repairing of the electrodes of spent LIBs. However, direct recycling technology is still in the laboratory operation stage, and there are still many difficulties and challenges to overcome. Herein, we firstly highlight the importance of recycling spent LIBs from LIB market development, raw material supply, environmental impact, and economic benefits. Subsequently, starting from the failure forms and mechanisms of electrode materials, we provide a detailed summary of various direct recycling and upcycling processes, reaction principles, as well as advantages and disadvantages. Additionally, the technology for converting waste cathodes and graphite into new functional materials, a topic rarely addressed in previous reviews, is comprehensively detailed in this review. Lastly, we provide a summary of the current status of LIB recycling and present future challenges. This review may serve as a source of inspiration for researchers and enterprises to develop more advanced recycling methodologies.","PeriodicalId":306,"journal":{"name":"Energy Storage Materials","volume":"46 1","pages":""},"PeriodicalIF":18.9000,"publicationDate":"2024-12-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Advanced Direct Recycling Technology Enables a Second Life of Spent Lithium-ion Battery\",\"authors\":\"Ji Shen, Miaomiao Zhou, Wei Liu, Yiliang Shi, Wenhao Tang, Yirui Deng, Ruiping Liu, Yinze Zuo, Jiujun Zhang\",\"doi\":\"10.1016/j.ensm.2024.103964\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"With the emergence of the energy crisis and the rise of human environmental awareness, lithium-ion batteries (LIBs), as a new type of energy storage device, are widely used in electric vehicles (EVs), mobile electronic products and stationary energy storage devices. The demand for LIBs has dramatically increased in recent years, leading to a shortage of raw materials for LIBs and a large number of retired LIBs. Therefore, it is particularly important to recycle spent LIBs. Compared with pyrometallurgy and hydrometallurgy, direct recycling, as a more advanced technology, focuses on repairing of the electrodes of spent LIBs. However, direct recycling technology is still in the laboratory operation stage, and there are still many difficulties and challenges to overcome. Herein, we firstly highlight the importance of recycling spent LIBs from LIB market development, raw material supply, environmental impact, and economic benefits. Subsequently, starting from the failure forms and mechanisms of electrode materials, we provide a detailed summary of various direct recycling and upcycling processes, reaction principles, as well as advantages and disadvantages. Additionally, the technology for converting waste cathodes and graphite into new functional materials, a topic rarely addressed in previous reviews, is comprehensively detailed in this review. Lastly, we provide a summary of the current status of LIB recycling and present future challenges. This review may serve as a source of inspiration for researchers and enterprises to develop more advanced recycling methodologies.\",\"PeriodicalId\":306,\"journal\":{\"name\":\"Energy Storage Materials\",\"volume\":\"46 1\",\"pages\":\"\"},\"PeriodicalIF\":18.9000,\"publicationDate\":\"2024-12-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Energy Storage Materials\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://doi.org/10.1016/j.ensm.2024.103964\",\"RegionNum\":1,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, PHYSICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Energy Storage Materials","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1016/j.ensm.2024.103964","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

摘要

随着能源危机的出现和人类环保意识的提高,锂离子电池(LIBs)作为一种新型的储能装置,被广泛应用于电动汽车(ev)、移动电子产品和固定式储能装置中。近年来,对锂离子电池的需求急剧增加,导致锂离子电池原材料短缺,大量锂离子电池退役。因此,回收废lib尤为重要。与火法冶金和湿法冶金相比,直接回收是一种更先进的技术,其重点是对废锂的电极进行修复。然而,直接回收技术尚处于实验室操作阶段,仍有许多困难和挑战需要克服。在此,我们首先强调了从LIB市场开发、原材料供应、环境影响和经济效益等方面回收废LIB的重要性。随后,从电极材料的失效形式和机理出发,详细总结了各种直接回收和升级回收工艺、反应原理以及优缺点。此外,将废阴极和石墨转化为新功能材料的技术在以往的综述中很少涉及,在本综述中进行了全面的详细介绍。最后,我们对LIB回收的现状和未来的挑战进行了总结。这一综述可以作为研究人员和企业开发更先进的回收方法的灵感来源。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Advanced Direct Recycling Technology Enables a Second Life of Spent Lithium-ion Battery

Advanced Direct Recycling Technology Enables a Second Life of Spent Lithium-ion Battery
With the emergence of the energy crisis and the rise of human environmental awareness, lithium-ion batteries (LIBs), as a new type of energy storage device, are widely used in electric vehicles (EVs), mobile electronic products and stationary energy storage devices. The demand for LIBs has dramatically increased in recent years, leading to a shortage of raw materials for LIBs and a large number of retired LIBs. Therefore, it is particularly important to recycle spent LIBs. Compared with pyrometallurgy and hydrometallurgy, direct recycling, as a more advanced technology, focuses on repairing of the electrodes of spent LIBs. However, direct recycling technology is still in the laboratory operation stage, and there are still many difficulties and challenges to overcome. Herein, we firstly highlight the importance of recycling spent LIBs from LIB market development, raw material supply, environmental impact, and economic benefits. Subsequently, starting from the failure forms and mechanisms of electrode materials, we provide a detailed summary of various direct recycling and upcycling processes, reaction principles, as well as advantages and disadvantages. Additionally, the technology for converting waste cathodes and graphite into new functional materials, a topic rarely addressed in previous reviews, is comprehensively detailed in this review. Lastly, we provide a summary of the current status of LIB recycling and present future challenges. This review may serve as a source of inspiration for researchers and enterprises to develop more advanced recycling methodologies.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Energy Storage Materials
Energy Storage Materials Materials Science-General Materials Science
CiteScore
33.00
自引率
5.90%
发文量
652
审稿时长
27 days
期刊介绍: Energy Storage Materials is a global interdisciplinary journal dedicated to sharing scientific and technological advancements in materials and devices for advanced energy storage and related energy conversion, such as in metal-O2 batteries. The journal features comprehensive research articles, including full papers and short communications, as well as authoritative feature articles and reviews by leading experts in the field. Energy Storage Materials covers a wide range of topics, including the synthesis, fabrication, structure, properties, performance, and technological applications of energy storage materials. Additionally, the journal explores strategies, policies, and developments in the field of energy storage materials and devices for sustainable energy. Published papers are selected based on their scientific and technological significance, their ability to provide valuable new knowledge, and their relevance to the international research community.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信