Xiaoyu Wang, Dr. Yuqing Yang, Haokun Yang, Prof. Hao Dong
{"title":"多肽自组装在不同pH水平上的固有荧光","authors":"Xiaoyu Wang, Dr. Yuqing Yang, Haokun Yang, Prof. Hao Dong","doi":"10.1002/anie.202420567","DOIUrl":null,"url":null,"abstract":"<p>The regulation of solution pH on the structural and optical properties of peptide self-assemblies remains a critical yet unresolved issue in peptide research. This study investigates the heptapeptide Ac-IHIHIQI-NH<sub>2</sub> and its intrinsic fluorescence across a range of pH levels, demonstrating that variations in pH lead to significant changes in the morphology of the self-assembled structures. While the position of the fluorescence emission remains constant—due to the stability provided by the hydrogen bonding network of the peptide backbone—the intensity of the fluorescence exhibits a direct correlation with the degree of self-assembly. This finding underscores a dynamic relationship between structural morphology and optical properties. Notably, the ability of the peptide to self-assemble under diverse pH conditions is a novel observation that contrasts with previously reported literature. By employing a computationally driven approach, complemented by rigorous experimental validation, this work establishes a new paradigm for studying complex interacting systems such as peptide self-assembly. Our findings enhance the understanding of how environmental factors influence peptide behavior and pave the way for the design of innovative peptide-based materials with tunable optical characteristics, with potential applications in bioluminescent probes and diagnostic tools for neurodegenerative diseases.</p>","PeriodicalId":125,"journal":{"name":"Angewandte Chemie International Edition","volume":"64 9","pages":""},"PeriodicalIF":16.1000,"publicationDate":"2024-12-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"The Intrinsic Fluorescence of Peptide Self-Assemblies Across pH Levels\",\"authors\":\"Xiaoyu Wang, Dr. Yuqing Yang, Haokun Yang, Prof. Hao Dong\",\"doi\":\"10.1002/anie.202420567\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>The regulation of solution pH on the structural and optical properties of peptide self-assemblies remains a critical yet unresolved issue in peptide research. This study investigates the heptapeptide Ac-IHIHIQI-NH<sub>2</sub> and its intrinsic fluorescence across a range of pH levels, demonstrating that variations in pH lead to significant changes in the morphology of the self-assembled structures. While the position of the fluorescence emission remains constant—due to the stability provided by the hydrogen bonding network of the peptide backbone—the intensity of the fluorescence exhibits a direct correlation with the degree of self-assembly. This finding underscores a dynamic relationship between structural morphology and optical properties. Notably, the ability of the peptide to self-assemble under diverse pH conditions is a novel observation that contrasts with previously reported literature. By employing a computationally driven approach, complemented by rigorous experimental validation, this work establishes a new paradigm for studying complex interacting systems such as peptide self-assembly. Our findings enhance the understanding of how environmental factors influence peptide behavior and pave the way for the design of innovative peptide-based materials with tunable optical characteristics, with potential applications in bioluminescent probes and diagnostic tools for neurodegenerative diseases.</p>\",\"PeriodicalId\":125,\"journal\":{\"name\":\"Angewandte Chemie International Edition\",\"volume\":\"64 9\",\"pages\":\"\"},\"PeriodicalIF\":16.1000,\"publicationDate\":\"2024-12-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Angewandte Chemie International Edition\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/anie.202420567\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Angewandte Chemie International Edition","FirstCategoryId":"92","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/anie.202420567","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
The Intrinsic Fluorescence of Peptide Self-Assemblies Across pH Levels
The regulation of solution pH on the structural and optical properties of peptide self-assemblies remains a critical yet unresolved issue in peptide research. This study investigates the heptapeptide Ac-IHIHIQI-NH2 and its intrinsic fluorescence across a range of pH levels, demonstrating that variations in pH lead to significant changes in the morphology of the self-assembled structures. While the position of the fluorescence emission remains constant—due to the stability provided by the hydrogen bonding network of the peptide backbone—the intensity of the fluorescence exhibits a direct correlation with the degree of self-assembly. This finding underscores a dynamic relationship between structural morphology and optical properties. Notably, the ability of the peptide to self-assemble under diverse pH conditions is a novel observation that contrasts with previously reported literature. By employing a computationally driven approach, complemented by rigorous experimental validation, this work establishes a new paradigm for studying complex interacting systems such as peptide self-assembly. Our findings enhance the understanding of how environmental factors influence peptide behavior and pave the way for the design of innovative peptide-based materials with tunable optical characteristics, with potential applications in bioluminescent probes and diagnostic tools for neurodegenerative diseases.
期刊介绍:
Angewandte Chemie, a journal of the German Chemical Society (GDCh), maintains a leading position among scholarly journals in general chemistry with an impressive Impact Factor of 16.6 (2022 Journal Citation Reports, Clarivate, 2023). Published weekly in a reader-friendly format, it features new articles almost every day. Established in 1887, Angewandte Chemie is a prominent chemistry journal, offering a dynamic blend of Review-type articles, Highlights, Communications, and Research Articles on a weekly basis, making it unique in the field.