单细胞RNA测序在老年牙髓中鉴定胰岛素样生长因子结合蛋白7

IF 13 1区 综合性期刊 Q1 MULTIDISCIPLINARY SCIENCES
Zhongchun Tong, Jie Wu, Qimei Gong, Yifang Yuan, Shengchao Wang, Wenkai Jiang
{"title":"单细胞RNA测序在老年牙髓中鉴定胰岛素样生长因子结合蛋白7","authors":"Zhongchun Tong, Jie Wu, Qimei Gong, Yifang Yuan, Shengchao Wang, Wenkai Jiang","doi":"10.1016/j.jare.2024.12.018","DOIUrl":null,"url":null,"abstract":"<h3>Introduction</h3>Aging influences the regenerative and reparative functions of dental pulp, and an in-depth and complete understanding of aged dental pulp is highly important.<h3>Objective</h3>This study aimed to explore the heterogeneity of young and aged dental pulp tissue via single-cell RNA sequencing (scRNA-seq), search novel markers of aged dental pulp, and further explore their mechanism.<h3>Methods</h3>ScRNA-seq was employed to analyze the heterogeneity of young and aged dental pulp tissue, and immunohistochemical staining was used to detect new marker Insulin-like Growth Factor Binding Protein 7 (IGFBP7) in aged dental pulp. Differentially expressed genes (DEGs) between young and aged dental pulp tissue related with senescence-associated secretory phenotype (SASP) were validated in aging model of H<sub>2</sub>O<sub>2</sub>-induced dental pulp fibroblast (DPF). The effect of IGFBP7 on cellular senescence were validated by SA-β-Gal, γ-H2AX, and F-actin cytoskeletal staining. RNA-seq was used to analyze the mechanism of IGFBP7 alleviating senescence of H<sub>2</sub>O<sub>2</sub>-induced DPFs.<h3>Results</h3>A total of 32,012 cells were sequenced from 8 dental pulp samples and categorized into 8 main clusters, including fibroblasts (FB), endothelial cells, monocytes, T cells, B cells, mesenchymal stem cells, Schwann cells, and nonmyelinating ScCs. The ratio of fibroblasts was the highest, and FB1 was the largest subcluster of fibroblasts in the young group. In aged dental pulp, the ratio of fibroblasts was relatively low, and fibroblasts had more cellular communication with other cell types in fibroblast growth factor (FGF) and insulin-like growth factor (IGF) signal pathways. IGFBP7 was significantly upregulated in the aged group. Recombinant IGFBP7 reduced the senescence of H<sub>2</sub>O<sub>2</sub>-induced DPFs.<h3>Conclusions</h3>These findings offer insights into the mechanisms of dental pulp aging and enhance our understanding of dental pulp at the single-cell level. Further comprehensive studies are required to clarify the exact mechanisms through which IGFBP7 influences dental pulp aging.","PeriodicalId":14952,"journal":{"name":"Journal of Advanced Research","volume":"10 1","pages":""},"PeriodicalIF":13.0000,"publicationDate":"2024-12-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Insulin-like growth factor binding protein 7 identified in aged dental pulp by single-cell RNA sequencing\",\"authors\":\"Zhongchun Tong, Jie Wu, Qimei Gong, Yifang Yuan, Shengchao Wang, Wenkai Jiang\",\"doi\":\"10.1016/j.jare.2024.12.018\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<h3>Introduction</h3>Aging influences the regenerative and reparative functions of dental pulp, and an in-depth and complete understanding of aged dental pulp is highly important.<h3>Objective</h3>This study aimed to explore the heterogeneity of young and aged dental pulp tissue via single-cell RNA sequencing (scRNA-seq), search novel markers of aged dental pulp, and further explore their mechanism.<h3>Methods</h3>ScRNA-seq was employed to analyze the heterogeneity of young and aged dental pulp tissue, and immunohistochemical staining was used to detect new marker Insulin-like Growth Factor Binding Protein 7 (IGFBP7) in aged dental pulp. Differentially expressed genes (DEGs) between young and aged dental pulp tissue related with senescence-associated secretory phenotype (SASP) were validated in aging model of H<sub>2</sub>O<sub>2</sub>-induced dental pulp fibroblast (DPF). The effect of IGFBP7 on cellular senescence were validated by SA-β-Gal, γ-H2AX, and F-actin cytoskeletal staining. RNA-seq was used to analyze the mechanism of IGFBP7 alleviating senescence of H<sub>2</sub>O<sub>2</sub>-induced DPFs.<h3>Results</h3>A total of 32,012 cells were sequenced from 8 dental pulp samples and categorized into 8 main clusters, including fibroblasts (FB), endothelial cells, monocytes, T cells, B cells, mesenchymal stem cells, Schwann cells, and nonmyelinating ScCs. The ratio of fibroblasts was the highest, and FB1 was the largest subcluster of fibroblasts in the young group. In aged dental pulp, the ratio of fibroblasts was relatively low, and fibroblasts had more cellular communication with other cell types in fibroblast growth factor (FGF) and insulin-like growth factor (IGF) signal pathways. IGFBP7 was significantly upregulated in the aged group. Recombinant IGFBP7 reduced the senescence of H<sub>2</sub>O<sub>2</sub>-induced DPFs.<h3>Conclusions</h3>These findings offer insights into the mechanisms of dental pulp aging and enhance our understanding of dental pulp at the single-cell level. Further comprehensive studies are required to clarify the exact mechanisms through which IGFBP7 influences dental pulp aging.\",\"PeriodicalId\":14952,\"journal\":{\"name\":\"Journal of Advanced Research\",\"volume\":\"10 1\",\"pages\":\"\"},\"PeriodicalIF\":13.0000,\"publicationDate\":\"2024-12-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Advanced Research\",\"FirstCategoryId\":\"103\",\"ListUrlMain\":\"https://doi.org/10.1016/j.jare.2024.12.018\",\"RegionNum\":1,\"RegionCategory\":\"综合性期刊\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MULTIDISCIPLINARY SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Advanced Research","FirstCategoryId":"103","ListUrlMain":"https://doi.org/10.1016/j.jare.2024.12.018","RegionNum":1,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
引用次数: 0

摘要

老化影响牙髓的再生和修复功能,深入全面地了解牙髓老化是非常重要的。目的通过单细胞RNA测序(scRNA-seq)技术,探讨年轻和老年牙髓组织的异质性,寻找新的牙髓衰老标志物,并进一步探讨其作用机制。方法采用sscrna -seq分析年轻和老年牙髓组织的异质性,并采用免疫组织化学染色检测老年牙髓中新的标志物胰岛素样生长因子结合蛋白7 (IGFBP7)。在h2o2诱导的牙髓成纤维细胞(DPF)衰老模型中,验证了年轻和老年牙髓组织中与衰老相关分泌表型(SASP)相关的差异表达基因(DEGs)。通过SA-β-Gal、γ-H2AX和F-actin细胞骨架染色验证IGFBP7对细胞衰老的影响。采用RNA-seq分析IGFBP7缓解h2o2诱导的DPFs衰老的机制。结果8份牙髓样本共检测到32,012个细胞,并将其分为8个主要簇:成纤维细胞(FB)、内皮细胞、单核细胞、T细胞、B细胞、间充质干细胞、雪旺细胞和非髓鞘ScCs。成纤维细胞比例最高,FB1是年轻组中最大的成纤维细胞亚簇。在老化牙髓中,成纤维细胞的比例相对较低,成纤维细胞在成纤维细胞生长因子(FGF)和胰岛素样生长因子(IGF)信号通路上与其他细胞类型有更多的细胞通讯。IGFBP7在老年组中显著上调。重组IGFBP7可减轻h2o2诱导的DPFs的衰老。结论这些发现有助于进一步了解牙髓老化的机制,并在单细胞水平上加深对牙髓老化的认识。IGFBP7影响牙髓老化的确切机制需要进一步的综合研究来阐明。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Insulin-like growth factor binding protein 7 identified in aged dental pulp by single-cell RNA sequencing

Insulin-like growth factor binding protein 7 identified in aged dental pulp by single-cell RNA sequencing

Introduction

Aging influences the regenerative and reparative functions of dental pulp, and an in-depth and complete understanding of aged dental pulp is highly important.

Objective

This study aimed to explore the heterogeneity of young and aged dental pulp tissue via single-cell RNA sequencing (scRNA-seq), search novel markers of aged dental pulp, and further explore their mechanism.

Methods

ScRNA-seq was employed to analyze the heterogeneity of young and aged dental pulp tissue, and immunohistochemical staining was used to detect new marker Insulin-like Growth Factor Binding Protein 7 (IGFBP7) in aged dental pulp. Differentially expressed genes (DEGs) between young and aged dental pulp tissue related with senescence-associated secretory phenotype (SASP) were validated in aging model of H2O2-induced dental pulp fibroblast (DPF). The effect of IGFBP7 on cellular senescence were validated by SA-β-Gal, γ-H2AX, and F-actin cytoskeletal staining. RNA-seq was used to analyze the mechanism of IGFBP7 alleviating senescence of H2O2-induced DPFs.

Results

A total of 32,012 cells were sequenced from 8 dental pulp samples and categorized into 8 main clusters, including fibroblasts (FB), endothelial cells, monocytes, T cells, B cells, mesenchymal stem cells, Schwann cells, and nonmyelinating ScCs. The ratio of fibroblasts was the highest, and FB1 was the largest subcluster of fibroblasts in the young group. In aged dental pulp, the ratio of fibroblasts was relatively low, and fibroblasts had more cellular communication with other cell types in fibroblast growth factor (FGF) and insulin-like growth factor (IGF) signal pathways. IGFBP7 was significantly upregulated in the aged group. Recombinant IGFBP7 reduced the senescence of H2O2-induced DPFs.

Conclusions

These findings offer insights into the mechanisms of dental pulp aging and enhance our understanding of dental pulp at the single-cell level. Further comprehensive studies are required to clarify the exact mechanisms through which IGFBP7 influences dental pulp aging.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Advanced Research
Journal of Advanced Research Multidisciplinary-Multidisciplinary
CiteScore
21.60
自引率
0.90%
发文量
280
审稿时长
12 weeks
期刊介绍: Journal of Advanced Research (J. Adv. Res.) is an applied/natural sciences, peer-reviewed journal that focuses on interdisciplinary research. The journal aims to contribute to applied research and knowledge worldwide through the publication of original and high-quality research articles in the fields of Medicine, Pharmaceutical Sciences, Dentistry, Physical Therapy, Veterinary Medicine, and Basic and Biological Sciences. The following abstracting and indexing services cover the Journal of Advanced Research: PubMed/Medline, Essential Science Indicators, Web of Science, Scopus, PubMed Central, PubMed, Science Citation Index Expanded, Directory of Open Access Journals (DOAJ), and INSPEC.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信