Xiang-Yu Li, Hailong Wang, TC Chakraborty, Armin Sorooshian, Luke D. Ziemba, Christiane Voigt, Kenneth Lee Thornhill, Emma Yuan
{"title":"数据驱动框架下气溶胶-云相互作用的预测","authors":"Xiang-Yu Li, Hailong Wang, TC Chakraborty, Armin Sorooshian, Luke D. Ziemba, Christiane Voigt, Kenneth Lee Thornhill, Emma Yuan","doi":"10.1029/2024GL110757","DOIUrl":null,"url":null,"abstract":"<p>Aerosol-cloud interactions (ACI) pose the largest uncertainty for climate projection. Among many challenges of understanding ACI, the question of whether ACI can be deterministically predicted has not been explicitly answered. Here we attempt to answer this question by predicting cloud droplet number concentration <span></span><math>\n <semantics>\n <mrow>\n <msub>\n <mi>N</mi>\n <mi>c</mi>\n </msub>\n </mrow>\n <annotation> ${N}_{c}$</annotation>\n </semantics></math> from aerosol number concentration <span></span><math>\n <semantics>\n <mrow>\n <msub>\n <mi>N</mi>\n <mi>a</mi>\n </msub>\n </mrow>\n <annotation> ${N}_{a}$</annotation>\n </semantics></math> and ambient conditions using a data-driven framework. We use aerosol properties, vertical velocity fluctuations, and meteorological states from the ACTIVATE field observations (2020–2022) as predictors to estimate <span></span><math>\n <semantics>\n <mrow>\n <msub>\n <mi>N</mi>\n <mi>c</mi>\n </msub>\n </mrow>\n <annotation> ${N}_{c}$</annotation>\n </semantics></math>. We show that the campaign-wide <span></span><math>\n <semantics>\n <mrow>\n <msub>\n <mi>N</mi>\n <mi>c</mi>\n </msub>\n </mrow>\n <annotation> ${N}_{c}$</annotation>\n </semantics></math> can be successfully predicted using machine learning models despite the strongly nonlinear and multi-scale nature of ACI. However, the observation-trained machine learning model fails to predict <span></span><math>\n <semantics>\n <mrow>\n <msub>\n <mi>N</mi>\n <mi>c</mi>\n </msub>\n </mrow>\n <annotation> ${N}_{c}$</annotation>\n </semantics></math> in individual cases while it successfully predicts <span></span><math>\n <semantics>\n <mrow>\n <msub>\n <mi>N</mi>\n <mi>c</mi>\n </msub>\n </mrow>\n <annotation> ${N}_{c}$</annotation>\n </semantics></math> of randomly selected data points that cover a broad spatiotemporal scale. This suggests that, within a data-driven framework, the <span></span><math>\n <semantics>\n <mrow>\n <msub>\n <mi>N</mi>\n <mi>c</mi>\n </msub>\n </mrow>\n <annotation> ${N}_{c}$</annotation>\n </semantics></math> prediction is uncertain at fine spatiotemporal scales.</p>","PeriodicalId":12523,"journal":{"name":"Geophysical Research Letters","volume":"51 24","pages":""},"PeriodicalIF":4.6000,"publicationDate":"2024-12-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1029/2024GL110757","citationCount":"0","resultStr":"{\"title\":\"On the Prediction of Aerosol-Cloud Interactions Within a Data-Driven Framework\",\"authors\":\"Xiang-Yu Li, Hailong Wang, TC Chakraborty, Armin Sorooshian, Luke D. Ziemba, Christiane Voigt, Kenneth Lee Thornhill, Emma Yuan\",\"doi\":\"10.1029/2024GL110757\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Aerosol-cloud interactions (ACI) pose the largest uncertainty for climate projection. Among many challenges of understanding ACI, the question of whether ACI can be deterministically predicted has not been explicitly answered. Here we attempt to answer this question by predicting cloud droplet number concentration <span></span><math>\\n <semantics>\\n <mrow>\\n <msub>\\n <mi>N</mi>\\n <mi>c</mi>\\n </msub>\\n </mrow>\\n <annotation> ${N}_{c}$</annotation>\\n </semantics></math> from aerosol number concentration <span></span><math>\\n <semantics>\\n <mrow>\\n <msub>\\n <mi>N</mi>\\n <mi>a</mi>\\n </msub>\\n </mrow>\\n <annotation> ${N}_{a}$</annotation>\\n </semantics></math> and ambient conditions using a data-driven framework. We use aerosol properties, vertical velocity fluctuations, and meteorological states from the ACTIVATE field observations (2020–2022) as predictors to estimate <span></span><math>\\n <semantics>\\n <mrow>\\n <msub>\\n <mi>N</mi>\\n <mi>c</mi>\\n </msub>\\n </mrow>\\n <annotation> ${N}_{c}$</annotation>\\n </semantics></math>. We show that the campaign-wide <span></span><math>\\n <semantics>\\n <mrow>\\n <msub>\\n <mi>N</mi>\\n <mi>c</mi>\\n </msub>\\n </mrow>\\n <annotation> ${N}_{c}$</annotation>\\n </semantics></math> can be successfully predicted using machine learning models despite the strongly nonlinear and multi-scale nature of ACI. However, the observation-trained machine learning model fails to predict <span></span><math>\\n <semantics>\\n <mrow>\\n <msub>\\n <mi>N</mi>\\n <mi>c</mi>\\n </msub>\\n </mrow>\\n <annotation> ${N}_{c}$</annotation>\\n </semantics></math> in individual cases while it successfully predicts <span></span><math>\\n <semantics>\\n <mrow>\\n <msub>\\n <mi>N</mi>\\n <mi>c</mi>\\n </msub>\\n </mrow>\\n <annotation> ${N}_{c}$</annotation>\\n </semantics></math> of randomly selected data points that cover a broad spatiotemporal scale. This suggests that, within a data-driven framework, the <span></span><math>\\n <semantics>\\n <mrow>\\n <msub>\\n <mi>N</mi>\\n <mi>c</mi>\\n </msub>\\n </mrow>\\n <annotation> ${N}_{c}$</annotation>\\n </semantics></math> prediction is uncertain at fine spatiotemporal scales.</p>\",\"PeriodicalId\":12523,\"journal\":{\"name\":\"Geophysical Research Letters\",\"volume\":\"51 24\",\"pages\":\"\"},\"PeriodicalIF\":4.6000,\"publicationDate\":\"2024-12-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://onlinelibrary.wiley.com/doi/epdf/10.1029/2024GL110757\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Geophysical Research Letters\",\"FirstCategoryId\":\"89\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1029/2024GL110757\",\"RegionNum\":1,\"RegionCategory\":\"地球科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"GEOSCIENCES, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Geophysical Research Letters","FirstCategoryId":"89","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1029/2024GL110757","RegionNum":1,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"GEOSCIENCES, MULTIDISCIPLINARY","Score":null,"Total":0}
On the Prediction of Aerosol-Cloud Interactions Within a Data-Driven Framework
Aerosol-cloud interactions (ACI) pose the largest uncertainty for climate projection. Among many challenges of understanding ACI, the question of whether ACI can be deterministically predicted has not been explicitly answered. Here we attempt to answer this question by predicting cloud droplet number concentration from aerosol number concentration and ambient conditions using a data-driven framework. We use aerosol properties, vertical velocity fluctuations, and meteorological states from the ACTIVATE field observations (2020–2022) as predictors to estimate . We show that the campaign-wide can be successfully predicted using machine learning models despite the strongly nonlinear and multi-scale nature of ACI. However, the observation-trained machine learning model fails to predict in individual cases while it successfully predicts of randomly selected data points that cover a broad spatiotemporal scale. This suggests that, within a data-driven framework, the prediction is uncertain at fine spatiotemporal scales.
期刊介绍:
Geophysical Research Letters (GRL) publishes high-impact, innovative, and timely research on major scientific advances in all the major geoscience disciplines. Papers are communications-length articles and should have broad and immediate implications in their discipline or across the geosciences. GRLmaintains the fastest turn-around of all high-impact publications in the geosciences and works closely with authors to ensure broad visibility of top papers.