Sofiene Mellouli, Talal Alqahtani, Salem Algarni, Abdullah A. Faqihi, Badr M. Alshammari, Lioua Kolsi
{"title":"利用热化学储能的太阳能有机郎肯循环发电厂的优化配置","authors":"Sofiene Mellouli, Talal Alqahtani, Salem Algarni, Abdullah A. Faqihi, Badr M. Alshammari, Lioua Kolsi","doi":"10.1016/j.csite.2024.105632","DOIUrl":null,"url":null,"abstract":"The thermal energy storage system greatly influences the efficiency and design of the Organic Rankine Cycle (ORC) power plant. In this research, a novel thermochemical energy storage (TCES) system was incorporated into the solar energy-driven ORC system to enhance its overall efficiency. The study details the TCES system, which utilizes paired metal hydrides (specifically LaNi<ce:inf loc=\"post\">4.25</ce:inf>Al<ce:inf loc=\"post\">0.75</ce:inf>/LaNi<ce:inf loc=\"post\">5</ce:inf>) in conjunction with a phase-change material (PCM). What makes this system unique is its integration with an ORC system-a novel approach not previously explored or examined. In order to evaluate and enhance the performance of the TCES system, an optimization model based on simulations was created using the SAM (System Advisor Model) software. This optimization framework is aimed at concurrently determining the best system design, taking into account factors such as solar multiple, storage duration, the levelized cost of electricity (LCOE), and the availability of solar resources at the location of the ORC plant. This study primarily focuses on achieving the best overall performance for a 50 MW ORC power plant in Tunisia. The results of this research demonstrate that the proposed ORC plant has the potential to generate an annual energy output of 244.2 GWh-e. This outcome is achieved through an optimized system design that incorporates a net conversion efficiency of 54.4 %, a solar multiple of 2.2, and a storage duration of 6.2 h. Additionally, the levelized cost of electricity (LCOE) decreases to a minimum value of 11.4 c/kWh. The study's findings emphasize the significance of integrating the TCES system into the ORC plant, driving advancements in solar energy technologies, and providing valuable insights for the development of future ORC plants.","PeriodicalId":9658,"journal":{"name":"Case Studies in Thermal Engineering","volume":"29 1","pages":""},"PeriodicalIF":6.4000,"publicationDate":"2024-12-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Optimal configuration of a solar-powered Organic Rankine Cycle power plant utilizing thermochemical energy storage\",\"authors\":\"Sofiene Mellouli, Talal Alqahtani, Salem Algarni, Abdullah A. Faqihi, Badr M. Alshammari, Lioua Kolsi\",\"doi\":\"10.1016/j.csite.2024.105632\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The thermal energy storage system greatly influences the efficiency and design of the Organic Rankine Cycle (ORC) power plant. In this research, a novel thermochemical energy storage (TCES) system was incorporated into the solar energy-driven ORC system to enhance its overall efficiency. The study details the TCES system, which utilizes paired metal hydrides (specifically LaNi<ce:inf loc=\\\"post\\\">4.25</ce:inf>Al<ce:inf loc=\\\"post\\\">0.75</ce:inf>/LaNi<ce:inf loc=\\\"post\\\">5</ce:inf>) in conjunction with a phase-change material (PCM). What makes this system unique is its integration with an ORC system-a novel approach not previously explored or examined. In order to evaluate and enhance the performance of the TCES system, an optimization model based on simulations was created using the SAM (System Advisor Model) software. This optimization framework is aimed at concurrently determining the best system design, taking into account factors such as solar multiple, storage duration, the levelized cost of electricity (LCOE), and the availability of solar resources at the location of the ORC plant. This study primarily focuses on achieving the best overall performance for a 50 MW ORC power plant in Tunisia. The results of this research demonstrate that the proposed ORC plant has the potential to generate an annual energy output of 244.2 GWh-e. This outcome is achieved through an optimized system design that incorporates a net conversion efficiency of 54.4 %, a solar multiple of 2.2, and a storage duration of 6.2 h. Additionally, the levelized cost of electricity (LCOE) decreases to a minimum value of 11.4 c/kWh. The study's findings emphasize the significance of integrating the TCES system into the ORC plant, driving advancements in solar energy technologies, and providing valuable insights for the development of future ORC plants.\",\"PeriodicalId\":9658,\"journal\":{\"name\":\"Case Studies in Thermal Engineering\",\"volume\":\"29 1\",\"pages\":\"\"},\"PeriodicalIF\":6.4000,\"publicationDate\":\"2024-12-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Case Studies in Thermal Engineering\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1016/j.csite.2024.105632\",\"RegionNum\":2,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"THERMODYNAMICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Case Studies in Thermal Engineering","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1016/j.csite.2024.105632","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"THERMODYNAMICS","Score":null,"Total":0}
Optimal configuration of a solar-powered Organic Rankine Cycle power plant utilizing thermochemical energy storage
The thermal energy storage system greatly influences the efficiency and design of the Organic Rankine Cycle (ORC) power plant. In this research, a novel thermochemical energy storage (TCES) system was incorporated into the solar energy-driven ORC system to enhance its overall efficiency. The study details the TCES system, which utilizes paired metal hydrides (specifically LaNi4.25Al0.75/LaNi5) in conjunction with a phase-change material (PCM). What makes this system unique is its integration with an ORC system-a novel approach not previously explored or examined. In order to evaluate and enhance the performance of the TCES system, an optimization model based on simulations was created using the SAM (System Advisor Model) software. This optimization framework is aimed at concurrently determining the best system design, taking into account factors such as solar multiple, storage duration, the levelized cost of electricity (LCOE), and the availability of solar resources at the location of the ORC plant. This study primarily focuses on achieving the best overall performance for a 50 MW ORC power plant in Tunisia. The results of this research demonstrate that the proposed ORC plant has the potential to generate an annual energy output of 244.2 GWh-e. This outcome is achieved through an optimized system design that incorporates a net conversion efficiency of 54.4 %, a solar multiple of 2.2, and a storage duration of 6.2 h. Additionally, the levelized cost of electricity (LCOE) decreases to a minimum value of 11.4 c/kWh. The study's findings emphasize the significance of integrating the TCES system into the ORC plant, driving advancements in solar energy technologies, and providing valuable insights for the development of future ORC plants.
期刊介绍:
Case Studies in Thermal Engineering provides a forum for the rapid publication of short, structured Case Studies in Thermal Engineering and related Short Communications. It provides an essential compendium of case studies for researchers and practitioners in the field of thermal engineering and others who are interested in aspects of thermal engineering cases that could affect other engineering processes. The journal not only publishes new and novel case studies, but also provides a forum for the publication of high quality descriptions of classic thermal engineering problems. The scope of the journal includes case studies of thermal engineering problems in components, devices and systems using existing experimental and numerical techniques in the areas of mechanical, aerospace, chemical, medical, thermal management for electronics, heat exchangers, regeneration, solar thermal energy, thermal storage, building energy conservation, and power generation. Case studies of thermal problems in other areas will also be considered.