{"title":"连铸过程中堵塞机理的热分析、流动分析和夹杂物分析","authors":"Xiaocheng Liang, Lin Wang, Zhongfei Liu, Zhihui Li, Xudong Luo, Feng Wu, Qichen Yuan, Benjun Cheng","doi":"10.1016/j.csite.2024.105602","DOIUrl":null,"url":null,"abstract":"The ladle shroud is a vital component in the continuous casting process of steelmaking as it supports the production of a wide range of specialty steels. However, it is plagued by a persistent issue of clogging, which not only diminishes the lifetime of the Alumina-Carbon ladle shroud but also severely disrupts the smooth operation of the continuous casting process. Utilizing a numerical simulation technique, the research adopted the method of particle-liquid two-phases coupling, to probe into the clogging mechanism in the ladle shroud from behavior of heat transfer, flow and inclusions. The study indicated that the temperature distribution and flow behavior have a positive effect on the formation of clogging, especially the inclusions. Various factors synergistically contribute on the inner wall, promoting severe clogging at the outlet of the ladle shroud. Finally, a simulation-based clogging mechanism is concluded coupling above factors.","PeriodicalId":9658,"journal":{"name":"Case Studies in Thermal Engineering","volume":"54 1","pages":""},"PeriodicalIF":6.4000,"publicationDate":"2024-12-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Thermal, flow and inclusions analysis of clogging mechanism in continuous casting process\",\"authors\":\"Xiaocheng Liang, Lin Wang, Zhongfei Liu, Zhihui Li, Xudong Luo, Feng Wu, Qichen Yuan, Benjun Cheng\",\"doi\":\"10.1016/j.csite.2024.105602\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The ladle shroud is a vital component in the continuous casting process of steelmaking as it supports the production of a wide range of specialty steels. However, it is plagued by a persistent issue of clogging, which not only diminishes the lifetime of the Alumina-Carbon ladle shroud but also severely disrupts the smooth operation of the continuous casting process. Utilizing a numerical simulation technique, the research adopted the method of particle-liquid two-phases coupling, to probe into the clogging mechanism in the ladle shroud from behavior of heat transfer, flow and inclusions. The study indicated that the temperature distribution and flow behavior have a positive effect on the formation of clogging, especially the inclusions. Various factors synergistically contribute on the inner wall, promoting severe clogging at the outlet of the ladle shroud. Finally, a simulation-based clogging mechanism is concluded coupling above factors.\",\"PeriodicalId\":9658,\"journal\":{\"name\":\"Case Studies in Thermal Engineering\",\"volume\":\"54 1\",\"pages\":\"\"},\"PeriodicalIF\":6.4000,\"publicationDate\":\"2024-12-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Case Studies in Thermal Engineering\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1016/j.csite.2024.105602\",\"RegionNum\":2,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"THERMODYNAMICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Case Studies in Thermal Engineering","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1016/j.csite.2024.105602","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"THERMODYNAMICS","Score":null,"Total":0}
Thermal, flow and inclusions analysis of clogging mechanism in continuous casting process
The ladle shroud is a vital component in the continuous casting process of steelmaking as it supports the production of a wide range of specialty steels. However, it is plagued by a persistent issue of clogging, which not only diminishes the lifetime of the Alumina-Carbon ladle shroud but also severely disrupts the smooth operation of the continuous casting process. Utilizing a numerical simulation technique, the research adopted the method of particle-liquid two-phases coupling, to probe into the clogging mechanism in the ladle shroud from behavior of heat transfer, flow and inclusions. The study indicated that the temperature distribution and flow behavior have a positive effect on the formation of clogging, especially the inclusions. Various factors synergistically contribute on the inner wall, promoting severe clogging at the outlet of the ladle shroud. Finally, a simulation-based clogging mechanism is concluded coupling above factors.
期刊介绍:
Case Studies in Thermal Engineering provides a forum for the rapid publication of short, structured Case Studies in Thermal Engineering and related Short Communications. It provides an essential compendium of case studies for researchers and practitioners in the field of thermal engineering and others who are interested in aspects of thermal engineering cases that could affect other engineering processes. The journal not only publishes new and novel case studies, but also provides a forum for the publication of high quality descriptions of classic thermal engineering problems. The scope of the journal includes case studies of thermal engineering problems in components, devices and systems using existing experimental and numerical techniques in the areas of mechanical, aerospace, chemical, medical, thermal management for electronics, heat exchangers, regeneration, solar thermal energy, thermal storage, building energy conservation, and power generation. Case studies of thermal problems in other areas will also be considered.