Oumaima Guizani, Nabiha Naili, Bourhan Tashtoush, Sami Kooli
{"title":"发展中国家太阳能/燃气混合巴氏杀菌系统的设计和经济可行性","authors":"Oumaima Guizani, Nabiha Naili, Bourhan Tashtoush, Sami Kooli","doi":"10.1016/j.csite.2024.105611","DOIUrl":null,"url":null,"abstract":"This work aims at developing a hybrid solar/gas pasteurization system by integrating a regenerator that utilizes high-temperature short-time (HTST) pasteurization techniques. Solar pasteurization facilitates localized milk processing, thereby reducing milk loss during transit. This system consists of a solar heating loop, a pasteurization loop, and a solar cooling loop utilizing an absorption chiller (heat pump). An extensive experimental study is conducted to assess the energy and exergy efficiency of system. A parametric analysis and numerical model utilizing TRNSYS software are conducted to determine the dimensions of the solar heating and cooling loops, as well as to evaluate heat transfer within the pasteurizer and the energy performance. An economic analysis is conducted to enhance the profitability of the hybrid solar/gas pasteurization system. The findings indicate that the regeneration rate for heating and cooling is 76 %. The heat loss in the pasteurizer is approximated at 2 % of the total energy utilized for heating or cooling. The actual specific heat requirement for milk pasteurization is estimated at 53 kJ/kg. Concentrating parabolic and evacuated tubes yield optimal efficiency with collector fields of 36 m<ce:sup loc=\"post\">2</ce:sup> and 25 m<ce:sup loc=\"post\">2</ce:sup>, respectively. The payback period for the solar cooling system is approximately 6.3 years, while that for the electric compressor chiller is about 2 years. The results indicate that the hybrid solar/gas pasteurization system is both feasible and economically viable.","PeriodicalId":9658,"journal":{"name":"Case Studies in Thermal Engineering","volume":"7 1","pages":""},"PeriodicalIF":6.4000,"publicationDate":"2024-12-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Design and economic viability of a hybrid solar/gas pasteurization system for developing countries\",\"authors\":\"Oumaima Guizani, Nabiha Naili, Bourhan Tashtoush, Sami Kooli\",\"doi\":\"10.1016/j.csite.2024.105611\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This work aims at developing a hybrid solar/gas pasteurization system by integrating a regenerator that utilizes high-temperature short-time (HTST) pasteurization techniques. Solar pasteurization facilitates localized milk processing, thereby reducing milk loss during transit. This system consists of a solar heating loop, a pasteurization loop, and a solar cooling loop utilizing an absorption chiller (heat pump). An extensive experimental study is conducted to assess the energy and exergy efficiency of system. A parametric analysis and numerical model utilizing TRNSYS software are conducted to determine the dimensions of the solar heating and cooling loops, as well as to evaluate heat transfer within the pasteurizer and the energy performance. An economic analysis is conducted to enhance the profitability of the hybrid solar/gas pasteurization system. The findings indicate that the regeneration rate for heating and cooling is 76 %. The heat loss in the pasteurizer is approximated at 2 % of the total energy utilized for heating or cooling. The actual specific heat requirement for milk pasteurization is estimated at 53 kJ/kg. Concentrating parabolic and evacuated tubes yield optimal efficiency with collector fields of 36 m<ce:sup loc=\\\"post\\\">2</ce:sup> and 25 m<ce:sup loc=\\\"post\\\">2</ce:sup>, respectively. The payback period for the solar cooling system is approximately 6.3 years, while that for the electric compressor chiller is about 2 years. The results indicate that the hybrid solar/gas pasteurization system is both feasible and economically viable.\",\"PeriodicalId\":9658,\"journal\":{\"name\":\"Case Studies in Thermal Engineering\",\"volume\":\"7 1\",\"pages\":\"\"},\"PeriodicalIF\":6.4000,\"publicationDate\":\"2024-12-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Case Studies in Thermal Engineering\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1016/j.csite.2024.105611\",\"RegionNum\":2,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"THERMODYNAMICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Case Studies in Thermal Engineering","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1016/j.csite.2024.105611","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"THERMODYNAMICS","Score":null,"Total":0}
Design and economic viability of a hybrid solar/gas pasteurization system for developing countries
This work aims at developing a hybrid solar/gas pasteurization system by integrating a regenerator that utilizes high-temperature short-time (HTST) pasteurization techniques. Solar pasteurization facilitates localized milk processing, thereby reducing milk loss during transit. This system consists of a solar heating loop, a pasteurization loop, and a solar cooling loop utilizing an absorption chiller (heat pump). An extensive experimental study is conducted to assess the energy and exergy efficiency of system. A parametric analysis and numerical model utilizing TRNSYS software are conducted to determine the dimensions of the solar heating and cooling loops, as well as to evaluate heat transfer within the pasteurizer and the energy performance. An economic analysis is conducted to enhance the profitability of the hybrid solar/gas pasteurization system. The findings indicate that the regeneration rate for heating and cooling is 76 %. The heat loss in the pasteurizer is approximated at 2 % of the total energy utilized for heating or cooling. The actual specific heat requirement for milk pasteurization is estimated at 53 kJ/kg. Concentrating parabolic and evacuated tubes yield optimal efficiency with collector fields of 36 m2 and 25 m2, respectively. The payback period for the solar cooling system is approximately 6.3 years, while that for the electric compressor chiller is about 2 years. The results indicate that the hybrid solar/gas pasteurization system is both feasible and economically viable.
期刊介绍:
Case Studies in Thermal Engineering provides a forum for the rapid publication of short, structured Case Studies in Thermal Engineering and related Short Communications. It provides an essential compendium of case studies for researchers and practitioners in the field of thermal engineering and others who are interested in aspects of thermal engineering cases that could affect other engineering processes. The journal not only publishes new and novel case studies, but also provides a forum for the publication of high quality descriptions of classic thermal engineering problems. The scope of the journal includes case studies of thermal engineering problems in components, devices and systems using existing experimental and numerical techniques in the areas of mechanical, aerospace, chemical, medical, thermal management for electronics, heat exchangers, regeneration, solar thermal energy, thermal storage, building energy conservation, and power generation. Case studies of thermal problems in other areas will also be considered.