IF 6.4 2区 工程技术 Q1 THERMODYNAMICS
Fatih Selimefendigil, Hakan F. Oztop
{"title":"Computational study and optimization of an inclined U-channel cooling system for triple conductive panels under magnetic field","authors":"Fatih Selimefendigil, Hakan F. Oztop","doi":"10.1016/j.csite.2024.105532","DOIUrl":null,"url":null,"abstract":"In order to maximize the efficacy of multiple component electronic systems or photovoltaic panels in multiple arrangements, thermal management and cooling system design become crucial. In the present work, a novel cooling system with U-shaped cooling channel for a triple conductive panel system is considered under ternary nano-enhanced magnetic field effects while Galerkin weighed residual finite element method is used as the solution technique. The numerical investigation is carried out for various Hartmann numbers (Ha between 0 and 60), magnetic field inclination (between 0 and 90), side wall inclination of cooling cavity (between 0 and 30), and cavity expansion ratio (between 0.2 and 0.5). At the highest Ha value, panel Pn2 shows a temperature reduction of 52 °C for <mml:math altimg=\"si1.svg\" display=\"inline\"><mml:mrow><mml:mi>η</mml:mi><mml:mo linebreak=\"goodbreak\" linebreakstyle=\"after\">=</mml:mo><mml:mn>0</mml:mn></mml:mrow></mml:math>, and an increase of roughly 24 °C for <mml:math altimg=\"si71.svg\" display=\"inline\"><mml:mrow><mml:mi>η</mml:mi><mml:mo linebreak=\"goodbreak\" linebreakstyle=\"after\">=</mml:mo><mml:mn>30</mml:mn></mml:mrow></mml:math>. The best magnetic field inclination for the lowest surface temperature varies according to the panels and cooling channels used. The surface temperature variation is 2 °C, 114 °C, and 114 °C for panels Pn1, Pn2, and Pn3, when comparing the best and worst cases. As expansion ratios increase, the average Nu generally drops in cooling channels with both flat (<mml:math altimg=\"si1.svg\" display=\"inline\"><mml:mrow><mml:mi>η</mml:mi><mml:mo linebreak=\"goodbreak\" linebreakstyle=\"after\">=</mml:mo><mml:mn>0</mml:mn></mml:mrow></mml:math>) and inclined (<mml:math altimg=\"si71.svg\" display=\"inline\"><mml:mrow><mml:mi>η</mml:mi><mml:mo linebreak=\"goodbreak\" linebreakstyle=\"after\">=</mml:mo><mml:mn>30</mml:mn></mml:mrow></mml:math>) walls. Based on the first three objectives by using optimization with COBYLA, panels Pn1, Pn2, and Pn3 have minimum temperatures of 30.3 °C, 46.6 °C, and 41.4 °C, respectively. By utilizing different objectives, different panel surface temperatures and performance improvements are achieved.","PeriodicalId":9658,"journal":{"name":"Case Studies in Thermal Engineering","volume":"91 1","pages":""},"PeriodicalIF":6.4000,"publicationDate":"2024-12-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Case Studies in Thermal Engineering","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1016/j.csite.2024.105532","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"THERMODYNAMICS","Score":null,"Total":0}
引用次数: 0

摘要

为了最大限度地提高多组件电子系统或多排列光伏面板的功效,热管理和冷却系统设计变得至关重要。在本研究中,考虑了在三元纳米增强磁场效应下,为三导电面板系统设计带有 U 型冷却通道的新型冷却系统,并采用 Galerkin 权衡残差有限元法作为求解技术。数值研究针对不同的哈特曼数(Ha 在 0 到 60 之间)、磁场倾斜度(0 到 90 之间)、冷却腔侧壁倾斜度(0 到 30 之间)和腔体膨胀比(0.2 到 0.5 之间)进行。在最高 Ha 值下,面板 Pn2 的温度在 η=0 时降低了 52 °C,在 η=30 时升高了约 24 °C。最低表面温度的最佳磁场倾角因所用面板和冷却通道而异。比较最佳和最差情况,面板 Pn1、Pn2 和 Pn3 的表面温度变化分别为 2 ℃、114 ℃ 和 114 ℃。随着膨胀比的增大,在具有平壁(η=0)和斜壁(η=30)的冷却通道中,平均 Nu 值普遍下降。根据 COBYLA 优化的前三个目标,面板 Pn1、Pn2 和 Pn3 的最低温度分别为 30.3 °C、46.6 °C 和 41.4 °C。通过利用不同的目标,可实现不同的面板表面温度和性能改进。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Computational study and optimization of an inclined U-channel cooling system for triple conductive panels under magnetic field
In order to maximize the efficacy of multiple component electronic systems or photovoltaic panels in multiple arrangements, thermal management and cooling system design become crucial. In the present work, a novel cooling system with U-shaped cooling channel for a triple conductive panel system is considered under ternary nano-enhanced magnetic field effects while Galerkin weighed residual finite element method is used as the solution technique. The numerical investigation is carried out for various Hartmann numbers (Ha between 0 and 60), magnetic field inclination (between 0 and 90), side wall inclination of cooling cavity (between 0 and 30), and cavity expansion ratio (between 0.2 and 0.5). At the highest Ha value, panel Pn2 shows a temperature reduction of 52 °C for η=0, and an increase of roughly 24 °C for η=30. The best magnetic field inclination for the lowest surface temperature varies according to the panels and cooling channels used. The surface temperature variation is 2 °C, 114 °C, and 114 °C for panels Pn1, Pn2, and Pn3, when comparing the best and worst cases. As expansion ratios increase, the average Nu generally drops in cooling channels with both flat (η=0) and inclined (η=30) walls. Based on the first three objectives by using optimization with COBYLA, panels Pn1, Pn2, and Pn3 have minimum temperatures of 30.3 °C, 46.6 °C, and 41.4 °C, respectively. By utilizing different objectives, different panel surface temperatures and performance improvements are achieved.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Case Studies in Thermal Engineering
Case Studies in Thermal Engineering Chemical Engineering-Fluid Flow and Transfer Processes
CiteScore
8.60
自引率
11.80%
发文量
812
审稿时长
76 days
期刊介绍: Case Studies in Thermal Engineering provides a forum for the rapid publication of short, structured Case Studies in Thermal Engineering and related Short Communications. It provides an essential compendium of case studies for researchers and practitioners in the field of thermal engineering and others who are interested in aspects of thermal engineering cases that could affect other engineering processes. The journal not only publishes new and novel case studies, but also provides a forum for the publication of high quality descriptions of classic thermal engineering problems. The scope of the journal includes case studies of thermal engineering problems in components, devices and systems using existing experimental and numerical techniques in the areas of mechanical, aerospace, chemical, medical, thermal management for electronics, heat exchangers, regeneration, solar thermal energy, thermal storage, building energy conservation, and power generation. Case studies of thermal problems in other areas will also be considered.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信