揭示与热固体表面接触的皮肤的时空温度分布

IF 6.4 2区 工程技术 Q1 THERMODYNAMICS
Jinu Sudhakaran, Dongchan Lee, Jung Kyung Kim
{"title":"揭示与热固体表面接触的皮肤的时空温度分布","authors":"Jinu Sudhakaran, Dongchan Lee, Jung Kyung Kim","doi":"10.1016/j.csite.2024.105599","DOIUrl":null,"url":null,"abstract":"The significance of understanding the complex temperature patterns and variations on skin during contact with hot solid surfaces has grown recently due to its implications for human safety, comfort, and healthcare. We developed a novel method to visualize the distribution of skin contact temperatures (T<ce:inf loc=\"post\">SC</ce:inf>), a task that was previously hindered by concealed contact areas. Thermographic images of heated thin solid plates and regression analyses established between measured temperatures from both sides of the plates were used to reconstruct T<ce:inf loc=\"post\">SC</ce:inf> maps. This approach accommodated plates made of indium tin oxide (ITO) glass, copper, and fabric along with porcine skin as a substitute for human skin. Human finger experiments with mildly heated ITO glass were conducted to bridge the gap between laboratory simulations and practical scenarios. Spatiotemporal mapping of T<ce:inf loc=\"post\">SC</ce:inf> unveiled localized hotspots, spatial gradients, and dynamic changes, highlighting the thermal stimulus area as well as the onset, intensity, and duration of pain sensation. The surface temperatures and thermophysical characteristics of both bodies in contact determine these patterns. Fabric's pain onset lagged behind ITO glass and copper. These findings have broad implications from shaping thermal safety protocols to advancing thermal tactile sensing for applications encompassing human–robot interactions, haptics, and electronic skins.","PeriodicalId":9658,"journal":{"name":"Case Studies in Thermal Engineering","volume":"22 1","pages":""},"PeriodicalIF":6.4000,"publicationDate":"2024-12-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Unveiling spatiotemporal temperature distribution at the skin in contact with hot solid surfaces\",\"authors\":\"Jinu Sudhakaran, Dongchan Lee, Jung Kyung Kim\",\"doi\":\"10.1016/j.csite.2024.105599\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The significance of understanding the complex temperature patterns and variations on skin during contact with hot solid surfaces has grown recently due to its implications for human safety, comfort, and healthcare. We developed a novel method to visualize the distribution of skin contact temperatures (T<ce:inf loc=\\\"post\\\">SC</ce:inf>), a task that was previously hindered by concealed contact areas. Thermographic images of heated thin solid plates and regression analyses established between measured temperatures from both sides of the plates were used to reconstruct T<ce:inf loc=\\\"post\\\">SC</ce:inf> maps. This approach accommodated plates made of indium tin oxide (ITO) glass, copper, and fabric along with porcine skin as a substitute for human skin. Human finger experiments with mildly heated ITO glass were conducted to bridge the gap between laboratory simulations and practical scenarios. Spatiotemporal mapping of T<ce:inf loc=\\\"post\\\">SC</ce:inf> unveiled localized hotspots, spatial gradients, and dynamic changes, highlighting the thermal stimulus area as well as the onset, intensity, and duration of pain sensation. The surface temperatures and thermophysical characteristics of both bodies in contact determine these patterns. Fabric's pain onset lagged behind ITO glass and copper. These findings have broad implications from shaping thermal safety protocols to advancing thermal tactile sensing for applications encompassing human–robot interactions, haptics, and electronic skins.\",\"PeriodicalId\":9658,\"journal\":{\"name\":\"Case Studies in Thermal Engineering\",\"volume\":\"22 1\",\"pages\":\"\"},\"PeriodicalIF\":6.4000,\"publicationDate\":\"2024-12-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Case Studies in Thermal Engineering\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1016/j.csite.2024.105599\",\"RegionNum\":2,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"THERMODYNAMICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Case Studies in Thermal Engineering","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1016/j.csite.2024.105599","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"THERMODYNAMICS","Score":null,"Total":0}
引用次数: 0

摘要

近来,了解皮肤与热固体表面接触时的复杂温度模式和变化变得越来越重要,因为这关系到人类的安全、舒适和医疗保健。我们开发了一种可视化皮肤接触温度(TSC)分布的新方法,这项任务以前受到隐蔽接触区域的阻碍。我们利用加热固体薄板的热成像图像和薄板两侧测量温度之间建立的回归分析来重建皮肤接触温度分布图。这种方法适用于由氧化铟锡(ITO)玻璃、铜和织物制成的薄板,以及作为人体皮肤替代物的猪皮。使用轻度加热的 ITO 玻璃进行了人体手指实验,以缩小实验室模拟与实际应用之间的差距。TSC 的时空映射揭示了局部热点、空间梯度和动态变化,突出了热刺激区域以及痛觉的开始、强度和持续时间。接触双方身体的表面温度和热物理特性决定了这些模式。织物的痛感开始时间落后于 ITO 玻璃和铜。这些发现具有广泛的意义,从制定热安全协议到推进热触觉传感的应用,包括人机交互、触觉和电子皮肤。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Unveiling spatiotemporal temperature distribution at the skin in contact with hot solid surfaces
The significance of understanding the complex temperature patterns and variations on skin during contact with hot solid surfaces has grown recently due to its implications for human safety, comfort, and healthcare. We developed a novel method to visualize the distribution of skin contact temperatures (TSC), a task that was previously hindered by concealed contact areas. Thermographic images of heated thin solid plates and regression analyses established between measured temperatures from both sides of the plates were used to reconstruct TSC maps. This approach accommodated plates made of indium tin oxide (ITO) glass, copper, and fabric along with porcine skin as a substitute for human skin. Human finger experiments with mildly heated ITO glass were conducted to bridge the gap between laboratory simulations and practical scenarios. Spatiotemporal mapping of TSC unveiled localized hotspots, spatial gradients, and dynamic changes, highlighting the thermal stimulus area as well as the onset, intensity, and duration of pain sensation. The surface temperatures and thermophysical characteristics of both bodies in contact determine these patterns. Fabric's pain onset lagged behind ITO glass and copper. These findings have broad implications from shaping thermal safety protocols to advancing thermal tactile sensing for applications encompassing human–robot interactions, haptics, and electronic skins.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Case Studies in Thermal Engineering
Case Studies in Thermal Engineering Chemical Engineering-Fluid Flow and Transfer Processes
CiteScore
8.60
自引率
11.80%
发文量
812
审稿时长
76 days
期刊介绍: Case Studies in Thermal Engineering provides a forum for the rapid publication of short, structured Case Studies in Thermal Engineering and related Short Communications. It provides an essential compendium of case studies for researchers and practitioners in the field of thermal engineering and others who are interested in aspects of thermal engineering cases that could affect other engineering processes. The journal not only publishes new and novel case studies, but also provides a forum for the publication of high quality descriptions of classic thermal engineering problems. The scope of the journal includes case studies of thermal engineering problems in components, devices and systems using existing experimental and numerical techniques in the areas of mechanical, aerospace, chemical, medical, thermal management for electronics, heat exchangers, regeneration, solar thermal energy, thermal storage, building energy conservation, and power generation. Case studies of thermal problems in other areas will also be considered.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信