Bobo Shi, Ke Jia, Shaokun Ge, Changlin He, Jun Zhao
{"title":"车辆起火时双层悬索桥温度特性的数值模拟研究","authors":"Bobo Shi, Ke Jia, Shaokun Ge, Changlin He, Jun Zhao","doi":"10.1016/j.csite.2024.105626","DOIUrl":null,"url":null,"abstract":"Knowledge of the temperature response of load-bearing structures in suspension bridges under vehicle fires is a prerequisite for fire protection measures. In this study, a double-deck suspension bridge was adopted as the engineering background. The temperature response of the main cables and slings was examined in the case of a fire on the upper vehicle deck, and the temperature characteristics of load-bearing structures such as trusses and the roof plate were investigated on the lower vehicle deck. The simulation variables included heat release rate (HRR), fire location, and ambient wind speed. The results showed that: (1) The fire temperature rose as HRR increased, and the fire temperature was inversely proportional to the wind speed. (2) When a fire occurred on the upper bridge deck, the maximum width of the high-temperature area on the main cable was 15 m, and the maximum temperature was 1040 °C. (3) When a fire occurred on the lower bridge deck, the maximum temperature of the truss was 1209 °C, and the maximum height of the high-temperature area exceeding 300 °C was 7.6 m. The maximum temperature reached in a 200 MW oil tanker fire was 1344 °C, lasting 3650 s.","PeriodicalId":9658,"journal":{"name":"Case Studies in Thermal Engineering","volume":"30 1","pages":""},"PeriodicalIF":6.4000,"publicationDate":"2024-12-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Numerical simulation study on temperature characteristics of double-deck suspension bridge in vehicle fires\",\"authors\":\"Bobo Shi, Ke Jia, Shaokun Ge, Changlin He, Jun Zhao\",\"doi\":\"10.1016/j.csite.2024.105626\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Knowledge of the temperature response of load-bearing structures in suspension bridges under vehicle fires is a prerequisite for fire protection measures. In this study, a double-deck suspension bridge was adopted as the engineering background. The temperature response of the main cables and slings was examined in the case of a fire on the upper vehicle deck, and the temperature characteristics of load-bearing structures such as trusses and the roof plate were investigated on the lower vehicle deck. The simulation variables included heat release rate (HRR), fire location, and ambient wind speed. The results showed that: (1) The fire temperature rose as HRR increased, and the fire temperature was inversely proportional to the wind speed. (2) When a fire occurred on the upper bridge deck, the maximum width of the high-temperature area on the main cable was 15 m, and the maximum temperature was 1040 °C. (3) When a fire occurred on the lower bridge deck, the maximum temperature of the truss was 1209 °C, and the maximum height of the high-temperature area exceeding 300 °C was 7.6 m. The maximum temperature reached in a 200 MW oil tanker fire was 1344 °C, lasting 3650 s.\",\"PeriodicalId\":9658,\"journal\":{\"name\":\"Case Studies in Thermal Engineering\",\"volume\":\"30 1\",\"pages\":\"\"},\"PeriodicalIF\":6.4000,\"publicationDate\":\"2024-12-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Case Studies in Thermal Engineering\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1016/j.csite.2024.105626\",\"RegionNum\":2,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"THERMODYNAMICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Case Studies in Thermal Engineering","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1016/j.csite.2024.105626","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"THERMODYNAMICS","Score":null,"Total":0}
Numerical simulation study on temperature characteristics of double-deck suspension bridge in vehicle fires
Knowledge of the temperature response of load-bearing structures in suspension bridges under vehicle fires is a prerequisite for fire protection measures. In this study, a double-deck suspension bridge was adopted as the engineering background. The temperature response of the main cables and slings was examined in the case of a fire on the upper vehicle deck, and the temperature characteristics of load-bearing structures such as trusses and the roof plate were investigated on the lower vehicle deck. The simulation variables included heat release rate (HRR), fire location, and ambient wind speed. The results showed that: (1) The fire temperature rose as HRR increased, and the fire temperature was inversely proportional to the wind speed. (2) When a fire occurred on the upper bridge deck, the maximum width of the high-temperature area on the main cable was 15 m, and the maximum temperature was 1040 °C. (3) When a fire occurred on the lower bridge deck, the maximum temperature of the truss was 1209 °C, and the maximum height of the high-temperature area exceeding 300 °C was 7.6 m. The maximum temperature reached in a 200 MW oil tanker fire was 1344 °C, lasting 3650 s.
期刊介绍:
Case Studies in Thermal Engineering provides a forum for the rapid publication of short, structured Case Studies in Thermal Engineering and related Short Communications. It provides an essential compendium of case studies for researchers and practitioners in the field of thermal engineering and others who are interested in aspects of thermal engineering cases that could affect other engineering processes. The journal not only publishes new and novel case studies, but also provides a forum for the publication of high quality descriptions of classic thermal engineering problems. The scope of the journal includes case studies of thermal engineering problems in components, devices and systems using existing experimental and numerical techniques in the areas of mechanical, aerospace, chemical, medical, thermal management for electronics, heat exchangers, regeneration, solar thermal energy, thermal storage, building energy conservation, and power generation. Case studies of thermal problems in other areas will also be considered.