Helena van Nieuwenhuizen, Anthony G Chesebro, Claire Polizu, Kieran Clarke, Helmut H Strey, Corey Weistuch, Lilianne R Mujica-Parodi
{"title":"酮症调节钾离子通道,加强因年龄而中断的全脑信号传导。","authors":"Helena van Nieuwenhuizen, Anthony G Chesebro, Claire Polizu, Kieran Clarke, Helmut H Strey, Corey Weistuch, Lilianne R Mujica-Parodi","doi":"10.1162/imag_a_00163","DOIUrl":null,"url":null,"abstract":"<p><p>Aging is associated with impaired signaling between brain regions when measured using resting-state fMRI. This age-related destabilization and desynchronization of brain networks reverses itself when the brain switches from metabolizing glucose to ketones. Here, we probe the mechanistic basis for these effects. First, we confirmed their robustness across measurement modalities using two datasets acquired from resting-state EEG (<i>Lifespan</i>: standard diet, 20-80 years, N = 201; <i>Metabolic</i>: individually weight-dosed and calorically-matched glucose and ketone ester challenge, <math> <msub><mrow><mi>μ</mi></mrow> <mrow><mi>a</mi> <mi>g</mi> <mi>e</mi></mrow> </msub> <mo>=</mo> <mn>26.9</mn> <mo>±</mo> <mn>11.2</mn> <mspace></mspace> <mtext>years</mtext></math> , N = 36). Then, using a multiscale conductance-based neural mass model, we identified the unique set of mechanistic parameters consistent with our clinical data. Together, our results implicate potassium (K<sup>+</sup>) gradient dysregulation as a mechanism for age-related neural desynchronization and its reversal with ketosis, the latter finding of which is consistent with direct measurement of ion channels. As such, the approach facilitates the connection between macroscopic brain activity and cellular-level mechanisms.</p>","PeriodicalId":73341,"journal":{"name":"Imaging neuroscience (Cambridge, Mass.)","volume":"2 ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11633768/pdf/","citationCount":"0","resultStr":"{\"title\":\"Ketosis regulates K<sup>+</sup> ion channels, strengthening brain-wide signaling disrupted by age.\",\"authors\":\"Helena van Nieuwenhuizen, Anthony G Chesebro, Claire Polizu, Kieran Clarke, Helmut H Strey, Corey Weistuch, Lilianne R Mujica-Parodi\",\"doi\":\"10.1162/imag_a_00163\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Aging is associated with impaired signaling between brain regions when measured using resting-state fMRI. This age-related destabilization and desynchronization of brain networks reverses itself when the brain switches from metabolizing glucose to ketones. Here, we probe the mechanistic basis for these effects. First, we confirmed their robustness across measurement modalities using two datasets acquired from resting-state EEG (<i>Lifespan</i>: standard diet, 20-80 years, N = 201; <i>Metabolic</i>: individually weight-dosed and calorically-matched glucose and ketone ester challenge, <math> <msub><mrow><mi>μ</mi></mrow> <mrow><mi>a</mi> <mi>g</mi> <mi>e</mi></mrow> </msub> <mo>=</mo> <mn>26.9</mn> <mo>±</mo> <mn>11.2</mn> <mspace></mspace> <mtext>years</mtext></math> , N = 36). Then, using a multiscale conductance-based neural mass model, we identified the unique set of mechanistic parameters consistent with our clinical data. Together, our results implicate potassium (K<sup>+</sup>) gradient dysregulation as a mechanism for age-related neural desynchronization and its reversal with ketosis, the latter finding of which is consistent with direct measurement of ion channels. As such, the approach facilitates the connection between macroscopic brain activity and cellular-level mechanisms.</p>\",\"PeriodicalId\":73341,\"journal\":{\"name\":\"Imaging neuroscience (Cambridge, Mass.)\",\"volume\":\"2 \",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11633768/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Imaging neuroscience (Cambridge, Mass.)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1162/imag_a_00163\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2024/5/8 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Imaging neuroscience (Cambridge, Mass.)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1162/imag_a_00163","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/5/8 0:00:00","PubModel":"Epub","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
摘要
当使用静息状态fMRI测量时,衰老与大脑区域之间的信号受损有关。当大脑从代谢葡萄糖转变为代谢酮时,这种与年龄相关的大脑网络的不稳定和不同步就会逆转。在这里,我们探讨这些影响的机制基础。首先,我们使用静息状态脑电图获得的两个数据集证实了它们在测量方式上的稳健性(寿命:标准饮食,20-80岁,N = 201;代谢:单独体重剂量和热量匹配的葡萄糖和酮酯刺激,μ g = 26.9±11.2年,N = 36)。然后,使用基于多尺度电导的神经质量模型,我们确定了一组与临床数据一致的独特机制参数。总之,我们的研究结果暗示钾(K+)梯度失调是与年龄相关的神经不同步及其与酮症逆转的机制,后者的发现与离子通道的直接测量一致。因此,这种方法促进了宏观大脑活动和细胞水平机制之间的联系。
Ketosis regulates K+ ion channels, strengthening brain-wide signaling disrupted by age.
Aging is associated with impaired signaling between brain regions when measured using resting-state fMRI. This age-related destabilization and desynchronization of brain networks reverses itself when the brain switches from metabolizing glucose to ketones. Here, we probe the mechanistic basis for these effects. First, we confirmed their robustness across measurement modalities using two datasets acquired from resting-state EEG (Lifespan: standard diet, 20-80 years, N = 201; Metabolic: individually weight-dosed and calorically-matched glucose and ketone ester challenge, , N = 36). Then, using a multiscale conductance-based neural mass model, we identified the unique set of mechanistic parameters consistent with our clinical data. Together, our results implicate potassium (K+) gradient dysregulation as a mechanism for age-related neural desynchronization and its reversal with ketosis, the latter finding of which is consistent with direct measurement of ion channels. As such, the approach facilitates the connection between macroscopic brain activity and cellular-level mechanisms.