连续上下文,用户独立,实时意图识别的动力下肢假体。

IF 1.7 4区 医学 Q4 BIOPHYSICS
Krishan Bhakta, Jairo Maldonado-Contreras, Jonathan Camargo, Sixu Zhou, William Compton, Kinsey R Herrin, Aaron J Young
{"title":"连续上下文,用户独立,实时意图识别的动力下肢假体。","authors":"Krishan Bhakta, Jairo Maldonado-Contreras, Jonathan Camargo, Sixu Zhou, William Compton, Kinsey R Herrin, Aaron J Young","doi":"10.1115/1.4067401","DOIUrl":null,"url":null,"abstract":"<p><p>Community ambulation is essential for maintaining a healthy lifestyle, but it poses significant challenges for individuals with limb loss due to complex task demands. In wearable robotics, particularly powered prostheses, there is a critical need to accurately estimate environmental context, such as walking speed and slope, to offer intuitive and seamless assistance during varied ambulation tasks. We developed a user-independent and multicontext, intent recognition system that was deployed in real-time on an Open Source Leg (OSL). We recruited 11 individuals with transfemoral amputation, with seven participants used for real-time validation. Our findings revealed two main conclusions: (1) the user-independent (IND) performance across speed and slope was not statistically different from user-dependent (DEP) models in real-time and did not degrade compared to its offline counterparts, and (2) IND walking speed estimates showed ∼0.09 m/s mean absolute error (MAE) and slope estimates showed ∼0.95 deg MAE across multicontext scenarios. Additionally, we provide an open-source dataset to facilitate further research in accurately estimating speed and slope using an IND approach in real-world walking tasks on a powered prosthesis.</p>","PeriodicalId":54871,"journal":{"name":"Journal of Biomechanical Engineering-Transactions of the Asme","volume":" ","pages":""},"PeriodicalIF":1.7000,"publicationDate":"2025-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Continuous-Context, User-Independent, Real-Time Intent Recognition for Powered Lower-Limb Prostheses.\",\"authors\":\"Krishan Bhakta, Jairo Maldonado-Contreras, Jonathan Camargo, Sixu Zhou, William Compton, Kinsey R Herrin, Aaron J Young\",\"doi\":\"10.1115/1.4067401\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Community ambulation is essential for maintaining a healthy lifestyle, but it poses significant challenges for individuals with limb loss due to complex task demands. In wearable robotics, particularly powered prostheses, there is a critical need to accurately estimate environmental context, such as walking speed and slope, to offer intuitive and seamless assistance during varied ambulation tasks. We developed a user-independent and multicontext, intent recognition system that was deployed in real-time on an Open Source Leg (OSL). We recruited 11 individuals with transfemoral amputation, with seven participants used for real-time validation. Our findings revealed two main conclusions: (1) the user-independent (IND) performance across speed and slope was not statistically different from user-dependent (DEP) models in real-time and did not degrade compared to its offline counterparts, and (2) IND walking speed estimates showed ∼0.09 m/s mean absolute error (MAE) and slope estimates showed ∼0.95 deg MAE across multicontext scenarios. Additionally, we provide an open-source dataset to facilitate further research in accurately estimating speed and slope using an IND approach in real-world walking tasks on a powered prosthesis.</p>\",\"PeriodicalId\":54871,\"journal\":{\"name\":\"Journal of Biomechanical Engineering-Transactions of the Asme\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":1.7000,\"publicationDate\":\"2025-02-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Biomechanical Engineering-Transactions of the Asme\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1115/1.4067401\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"BIOPHYSICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Biomechanical Engineering-Transactions of the Asme","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1115/1.4067401","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"BIOPHYSICS","Score":null,"Total":0}
引用次数: 0

摘要

社区活动对于维持健康的生活方式至关重要,但由于复杂的任务需求,它对肢体丧失的个人构成了重大挑战。在可穿戴机器人中,特别是动力假肢,迫切需要准确估计环境背景,例如行走速度和坡度,以便在各种行走任务中提供直观和无缝的辅助。我们开发了一个独立于用户和多上下文的意图识别系统,该系统实时部署在一个开源的膝关节和踝关节动力假肢(OSL)上。我们招募了11名经股骨截肢患者,其中7名参与者用于实时验证。我们的研究结果揭示了两个主要结论:1)用户独立(IND)模型在速度和坡度上的实时性能与用户依赖(DEP)模型没有统计学差异,并且与离线模型相比没有下降;2)IND步行速度估计的平均绝对误差(MAE)为~0.09 m/s,坡度估计的平均绝对误差为~0.95°。此外,我们提供了一个开源数据集,以促进在现实世界中使用IND方法在动力假肢上准确估计速度和坡度的进一步研究。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Continuous-Context, User-Independent, Real-Time Intent Recognition for Powered Lower-Limb Prostheses.

Community ambulation is essential for maintaining a healthy lifestyle, but it poses significant challenges for individuals with limb loss due to complex task demands. In wearable robotics, particularly powered prostheses, there is a critical need to accurately estimate environmental context, such as walking speed and slope, to offer intuitive and seamless assistance during varied ambulation tasks. We developed a user-independent and multicontext, intent recognition system that was deployed in real-time on an Open Source Leg (OSL). We recruited 11 individuals with transfemoral amputation, with seven participants used for real-time validation. Our findings revealed two main conclusions: (1) the user-independent (IND) performance across speed and slope was not statistically different from user-dependent (DEP) models in real-time and did not degrade compared to its offline counterparts, and (2) IND walking speed estimates showed ∼0.09 m/s mean absolute error (MAE) and slope estimates showed ∼0.95 deg MAE across multicontext scenarios. Additionally, we provide an open-source dataset to facilitate further research in accurately estimating speed and slope using an IND approach in real-world walking tasks on a powered prosthesis.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
3.40
自引率
5.90%
发文量
169
审稿时长
4-8 weeks
期刊介绍: Artificial Organs and Prostheses; Bioinstrumentation and Measurements; Bioheat Transfer; Biomaterials; Biomechanics; Bioprocess Engineering; Cellular Mechanics; Design and Control of Biological Systems; Physiological Systems.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信