使用音频频谱图变压器进行帕金森病分类的声音生物标志物。

IF 2.5 4区 医学 Q1 AUDIOLOGY & SPEECH-LANGUAGE PATHOLOGY
Nuwan Madusanka, Byeong-Il Lee
{"title":"使用音频频谱图变压器进行帕金森病分类的声音生物标志物。","authors":"Nuwan Madusanka, Byeong-Il Lee","doi":"10.1016/j.jvoice.2024.11.008","DOIUrl":null,"url":null,"abstract":"<p><p>Parkinson's disease (PD) is a neurodegenerative disorder affecting motor and non-motor functions, including speech. This study evaluates the effectiveness of the audio spectrogram transformer (AST) model in detecting PD through vocal biomarkers, hypothesizing that its self-attention mechanism would better capture PD related speech impairments compared to traditional deep learning approaches. Speech recordings from 150 participants (100 from PC-GITA: 50 PD, 50 healthy controls (HC); 50 from Italian Parkinson's voice and speech (ITA): 28 PD, 22 HC) were analyzed using the AST model and compared against established architectures including VGG16, VGG19, ResNet18, ResNet34, vision transformer, and swin transformer. Audio preprocessing included sampling rate standardization to 16 kHz and amplitude normalization. The AST model achieved superior classification performance across all datasets: 97.14% accuracy on ITA, 91.67% on Parkinson's Colombian - Grupo de Investigación en Telecomunicaciones Aplicadas (PC-GITA), and 92.73% on the combined dataset. Performance remained consistent across different speech tasks, with particularly strong results in sustained vowel analysis (precision: 0.97 ± 0.03, recall: 0.96 ± 0.03). The model demonstrated robust cross-lingual generalization, outperforming traditional architectures by 5%-10% in accuracy. These results suggest that the AST model provides a reliable, non-invasive method for PD detection through voice analysis, with strong performance across different languages and speech tasks. The model's success in cross-lingual generalization indicates potential for broader clinical application, though validation across more diverse populations is needed for clinical implementation.</p>","PeriodicalId":49954,"journal":{"name":"Journal of Voice","volume":" ","pages":""},"PeriodicalIF":2.5000,"publicationDate":"2024-12-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Vocal Biomarkers for Parkinson's Disease Classification Using Audio Spectrogram Transformers.\",\"authors\":\"Nuwan Madusanka, Byeong-Il Lee\",\"doi\":\"10.1016/j.jvoice.2024.11.008\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Parkinson's disease (PD) is a neurodegenerative disorder affecting motor and non-motor functions, including speech. This study evaluates the effectiveness of the audio spectrogram transformer (AST) model in detecting PD through vocal biomarkers, hypothesizing that its self-attention mechanism would better capture PD related speech impairments compared to traditional deep learning approaches. Speech recordings from 150 participants (100 from PC-GITA: 50 PD, 50 healthy controls (HC); 50 from Italian Parkinson's voice and speech (ITA): 28 PD, 22 HC) were analyzed using the AST model and compared against established architectures including VGG16, VGG19, ResNet18, ResNet34, vision transformer, and swin transformer. Audio preprocessing included sampling rate standardization to 16 kHz and amplitude normalization. The AST model achieved superior classification performance across all datasets: 97.14% accuracy on ITA, 91.67% on Parkinson's Colombian - Grupo de Investigación en Telecomunicaciones Aplicadas (PC-GITA), and 92.73% on the combined dataset. Performance remained consistent across different speech tasks, with particularly strong results in sustained vowel analysis (precision: 0.97 ± 0.03, recall: 0.96 ± 0.03). The model demonstrated robust cross-lingual generalization, outperforming traditional architectures by 5%-10% in accuracy. These results suggest that the AST model provides a reliable, non-invasive method for PD detection through voice analysis, with strong performance across different languages and speech tasks. The model's success in cross-lingual generalization indicates potential for broader clinical application, though validation across more diverse populations is needed for clinical implementation.</p>\",\"PeriodicalId\":49954,\"journal\":{\"name\":\"Journal of Voice\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":2.5000,\"publicationDate\":\"2024-12-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Voice\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1016/j.jvoice.2024.11.008\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"AUDIOLOGY & SPEECH-LANGUAGE PATHOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Voice","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1016/j.jvoice.2024.11.008","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"AUDIOLOGY & SPEECH-LANGUAGE PATHOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

帕金森病(PD)是一种影响运动和非运动功能的神经退行性疾病,包括语言。本研究评估了音频谱图转换器(AST)模型通过声音生物标志物检测PD的有效性,并假设与传统的深度学习方法相比,其自注意机制可以更好地捕获PD相关的语言障碍。150名参与者的语音记录(100名来自PC-GITA): 50名PD, 50名健康对照(HC);采用AST模型对50例意大利帕金森病语音(ITA)患者进行分析,其中PD 28例,HC 22例,并与VGG16、VGG19、ResNet18、ResNet34、vision transformer和swin transformer等现有结构进行比较。音频预处理包括采样率标准化到16 kHz和幅度归一化。AST模型在所有数据集上都取得了优异的分类性能:在ITA上的准确率为97.14%,在帕金森哥伦比亚- Investigación en Telecomunicaciones plicadas (PC-GITA)上的准确率为91.67%,在组合数据集上的准确率为92.73%。在不同的语音任务中,表现保持一致,特别是在持续的元音分析方面(精度:0.97±0.03,召回率:0.96±0.03)。该模型展示了强大的跨语言泛化能力,准确率比传统架构高出5%-10%。这些结果表明AST模型通过语音分析为PD检测提供了一种可靠的、非侵入性的方法,在不同语言和语音任务中具有较强的性能。该模型在跨语言推广方面的成功表明了更广泛的临床应用潜力,尽管临床实施需要在更多样化的人群中进行验证。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Vocal Biomarkers for Parkinson's Disease Classification Using Audio Spectrogram Transformers.

Parkinson's disease (PD) is a neurodegenerative disorder affecting motor and non-motor functions, including speech. This study evaluates the effectiveness of the audio spectrogram transformer (AST) model in detecting PD through vocal biomarkers, hypothesizing that its self-attention mechanism would better capture PD related speech impairments compared to traditional deep learning approaches. Speech recordings from 150 participants (100 from PC-GITA: 50 PD, 50 healthy controls (HC); 50 from Italian Parkinson's voice and speech (ITA): 28 PD, 22 HC) were analyzed using the AST model and compared against established architectures including VGG16, VGG19, ResNet18, ResNet34, vision transformer, and swin transformer. Audio preprocessing included sampling rate standardization to 16 kHz and amplitude normalization. The AST model achieved superior classification performance across all datasets: 97.14% accuracy on ITA, 91.67% on Parkinson's Colombian - Grupo de Investigación en Telecomunicaciones Aplicadas (PC-GITA), and 92.73% on the combined dataset. Performance remained consistent across different speech tasks, with particularly strong results in sustained vowel analysis (precision: 0.97 ± 0.03, recall: 0.96 ± 0.03). The model demonstrated robust cross-lingual generalization, outperforming traditional architectures by 5%-10% in accuracy. These results suggest that the AST model provides a reliable, non-invasive method for PD detection through voice analysis, with strong performance across different languages and speech tasks. The model's success in cross-lingual generalization indicates potential for broader clinical application, though validation across more diverse populations is needed for clinical implementation.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Voice
Journal of Voice 医学-耳鼻喉科学
CiteScore
4.00
自引率
13.60%
发文量
395
审稿时长
59 days
期刊介绍: The Journal of Voice is widely regarded as the world''s premiere journal for voice medicine and research. This peer-reviewed publication is listed in Index Medicus and is indexed by the Institute for Scientific Information. The journal contains articles written by experts throughout the world on all topics in voice sciences, voice medicine and surgery, and speech-language pathologists'' management of voice-related problems. The journal includes clinical articles, clinical research, and laboratory research. Members of the Foundation receive the journal as a benefit of membership.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信