分子可定制的金属氧化物团簇确保了反向钙钛矿太阳能电池中坚固的界面连接。

IF 11.7 1区 综合性期刊 Q1 MULTIDISCIPLINARY SCIENCES
Science Advances Pub Date : 2024-12-13 Epub Date: 2024-12-11 DOI:10.1126/sciadv.adq1150
Fengzhu Li, Chaowei Zhao, Yanxun Li, Zhen Zhang, Xiaofeng Huang, Yuefeng Zhang, Jie Fang, Tieyuan Bian, Zhiyuan Zeng, Jun Yin, Alex K-Y Jen
{"title":"分子可定制的金属氧化物团簇确保了反向钙钛矿太阳能电池中坚固的界面连接。","authors":"Fengzhu Li, Chaowei Zhao, Yanxun Li, Zhen Zhang, Xiaofeng Huang, Yuefeng Zhang, Jie Fang, Tieyuan Bian, Zhiyuan Zeng, Jun Yin, Alex K-Y Jen","doi":"10.1126/sciadv.adq1150","DOIUrl":null,"url":null,"abstract":"<p><p>Interfacial recombination and ion migration between perovskite and electron-transporting materials have been the persisting challenges in further improving the efficiency and stability of perovskite solar cells (PVSCs). Here, we design a series of molecularly tailorable clusters as an interlayer that can simultaneously enhance the interaction with C<sub>60</sub> and perovskite. These clusters have precisely controlled structures, decent charge carrier mobility, considerable solubility, suitable energy levels, and functional ligands, which can help passivate perovskite surface defects, form a uniform capping net to immobilize C<sub>60</sub>, and build a robust coupling between perovskite and C<sub>60</sub>. The target inverted PVSCs achieve an impressive power conversion efficiency (PCE) of 25.6% without the need for additional surface passivation. Crucially, the unencapsulated device displays excellent stability under light, heat, and bias, maintaining 98% of its initial PCE after 1500 hours of maximum power point tracking. These results show great promise in the development of advanced interfacial materials for highly efficient perovskite photovoltaics.</p>","PeriodicalId":21609,"journal":{"name":"Science Advances","volume":"10 50","pages":"eadq1150"},"PeriodicalIF":11.7000,"publicationDate":"2024-12-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11633742/pdf/","citationCount":"0","resultStr":"{\"title\":\"Molecularly tailorable metal oxide clusters ensured robust interfacial connection in inverted perovskite solar cells.\",\"authors\":\"Fengzhu Li, Chaowei Zhao, Yanxun Li, Zhen Zhang, Xiaofeng Huang, Yuefeng Zhang, Jie Fang, Tieyuan Bian, Zhiyuan Zeng, Jun Yin, Alex K-Y Jen\",\"doi\":\"10.1126/sciadv.adq1150\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Interfacial recombination and ion migration between perovskite and electron-transporting materials have been the persisting challenges in further improving the efficiency and stability of perovskite solar cells (PVSCs). Here, we design a series of molecularly tailorable clusters as an interlayer that can simultaneously enhance the interaction with C<sub>60</sub> and perovskite. These clusters have precisely controlled structures, decent charge carrier mobility, considerable solubility, suitable energy levels, and functional ligands, which can help passivate perovskite surface defects, form a uniform capping net to immobilize C<sub>60</sub>, and build a robust coupling between perovskite and C<sub>60</sub>. The target inverted PVSCs achieve an impressive power conversion efficiency (PCE) of 25.6% without the need for additional surface passivation. Crucially, the unencapsulated device displays excellent stability under light, heat, and bias, maintaining 98% of its initial PCE after 1500 hours of maximum power point tracking. These results show great promise in the development of advanced interfacial materials for highly efficient perovskite photovoltaics.</p>\",\"PeriodicalId\":21609,\"journal\":{\"name\":\"Science Advances\",\"volume\":\"10 50\",\"pages\":\"eadq1150\"},\"PeriodicalIF\":11.7000,\"publicationDate\":\"2024-12-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11633742/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Science Advances\",\"FirstCategoryId\":\"103\",\"ListUrlMain\":\"https://doi.org/10.1126/sciadv.adq1150\",\"RegionNum\":1,\"RegionCategory\":\"综合性期刊\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2024/12/11 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q1\",\"JCRName\":\"MULTIDISCIPLINARY SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Science Advances","FirstCategoryId":"103","ListUrlMain":"https://doi.org/10.1126/sciadv.adq1150","RegionNum":1,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/12/11 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
引用次数: 0

摘要

钙钛矿与电子传递材料之间的界面重组和离子迁移一直是提高钙钛矿太阳能电池(PVSCs)效率和稳定性的持续挑战。在这里,我们设计了一系列分子可定制的簇作为中间层,可以同时增强与C60和钙钛矿的相互作用。这些簇具有精确控制的结构、良好的载流子迁移率、可观的溶解度、合适的能级和功能配体,可以帮助钝化钙钛矿表面缺陷,形成均匀的封盖网来固定C60,并在钙钛矿和C60之间建立牢固的耦合。目标倒置PVSCs无需额外的表面钝化,即可实现25.6%的功率转换效率(PCE)。至关重要的是,未封装的器件在光、热和偏压下都表现出出色的稳定性,在最大功率点跟踪1500小时后,其初始PCE保持在98%。这些结果显示了开发高效钙钛矿光伏的先进界面材料的巨大希望。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Molecularly tailorable metal oxide clusters ensured robust interfacial connection in inverted perovskite solar cells.

Interfacial recombination and ion migration between perovskite and electron-transporting materials have been the persisting challenges in further improving the efficiency and stability of perovskite solar cells (PVSCs). Here, we design a series of molecularly tailorable clusters as an interlayer that can simultaneously enhance the interaction with C60 and perovskite. These clusters have precisely controlled structures, decent charge carrier mobility, considerable solubility, suitable energy levels, and functional ligands, which can help passivate perovskite surface defects, form a uniform capping net to immobilize C60, and build a robust coupling between perovskite and C60. The target inverted PVSCs achieve an impressive power conversion efficiency (PCE) of 25.6% without the need for additional surface passivation. Crucially, the unencapsulated device displays excellent stability under light, heat, and bias, maintaining 98% of its initial PCE after 1500 hours of maximum power point tracking. These results show great promise in the development of advanced interfacial materials for highly efficient perovskite photovoltaics.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Science Advances
Science Advances 综合性期刊-综合性期刊
CiteScore
21.40
自引率
1.50%
发文量
1937
审稿时长
29 weeks
期刊介绍: Science Advances, an open-access journal by AAAS, publishes impactful research in diverse scientific areas. It aims for fair, fast, and expert peer review, providing freely accessible research to readers. Led by distinguished scientists, the journal supports AAAS's mission by extending Science magazine's capacity to identify and promote significant advances. Evolving digital publishing technologies play a crucial role in advancing AAAS's global mission for science communication and benefitting humankind.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信