衰老和细胞扩增增强了人脂肪干细胞产生的细胞外小泡中的microRNA多样性。

IF 2 4区 生物学 Q3 BIOTECHNOLOGY & APPLIED MICROBIOLOGY
Cytotechnology Pub Date : 2025-02-01 Epub Date: 2024-12-10 DOI:10.1007/s10616-024-00675-6
Toshiya Tsubaki, Ryota Chijimatsu, Taiga Takeda, Maki Abe, Takahiro Ochiya, Shinsaku Tsuji, Keita Inoue, Tokio Matsuzaki, Yasuhide Iwanaga, Yasunori Omata, Sakae Tanaka, Taku Saito
{"title":"衰老和细胞扩增增强了人脂肪干细胞产生的细胞外小泡中的microRNA多样性。","authors":"Toshiya Tsubaki, Ryota Chijimatsu, Taiga Takeda, Maki Abe, Takahiro Ochiya, Shinsaku Tsuji, Keita Inoue, Tokio Matsuzaki, Yasuhide Iwanaga, Yasunori Omata, Sakae Tanaka, Taku Saito","doi":"10.1007/s10616-024-00675-6","DOIUrl":null,"url":null,"abstract":"<p><p>Adipose-derived stem cells (ASCs) and their small extracellular vesicles (sEVs) hold significant potential for regenerative medicine due to their tissue repair capabilities. The microRNA (miRNA) content in sEVs varies depending on ASC status; however, the effects of aging and cell passage on miRNA profiles remain unclear. In this study, we examined the effects of donor age and cell expansion on ASC characteristics and transcriptome using ASCs obtained from three young and three old donors. Cell expansion significantly impaired stem cell properties, notably reducing proliferation and differentiation capacities. In contrast, donor age had minimal effects on ASCs. RNA sequencing (RNA-seq) revealed differences in gene expression related to stemness, phagocytosis, and metabolic processes influenced by cell expansion. To investigate miRNA variability, we performed small RNA-seq on sEVs collected from ASCs of all six donors. The miRNA profiles were influenced by donor age and cell passage. Interestingly, functional enrichment analysis indicated that advanced donor age and increased cell passage may enhance the production of miRNAs associated with organ development through various pathways. These findings suggest that donor age and cell expansion differentially influence ASC characteristics and sEV miRNA content, highlighting the need for disease-specific conditioning of ASCs to optimize the therapeutic effects of sEVs in clinical applications.</p><p><strong>Supplementary information: </strong>The online version contains supplementary material available at 10.1007/s10616-024-00675-6.</p>","PeriodicalId":10890,"journal":{"name":"Cytotechnology","volume":"77 1","pages":"15"},"PeriodicalIF":2.0000,"publicationDate":"2025-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11631832/pdf/","citationCount":"0","resultStr":"{\"title\":\"Aging and cell expansion enhance microRNA diversity in small extracellular vesicles produced from human adipose-derived stem cells.\",\"authors\":\"Toshiya Tsubaki, Ryota Chijimatsu, Taiga Takeda, Maki Abe, Takahiro Ochiya, Shinsaku Tsuji, Keita Inoue, Tokio Matsuzaki, Yasuhide Iwanaga, Yasunori Omata, Sakae Tanaka, Taku Saito\",\"doi\":\"10.1007/s10616-024-00675-6\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Adipose-derived stem cells (ASCs) and their small extracellular vesicles (sEVs) hold significant potential for regenerative medicine due to their tissue repair capabilities. The microRNA (miRNA) content in sEVs varies depending on ASC status; however, the effects of aging and cell passage on miRNA profiles remain unclear. In this study, we examined the effects of donor age and cell expansion on ASC characteristics and transcriptome using ASCs obtained from three young and three old donors. Cell expansion significantly impaired stem cell properties, notably reducing proliferation and differentiation capacities. In contrast, donor age had minimal effects on ASCs. RNA sequencing (RNA-seq) revealed differences in gene expression related to stemness, phagocytosis, and metabolic processes influenced by cell expansion. To investigate miRNA variability, we performed small RNA-seq on sEVs collected from ASCs of all six donors. The miRNA profiles were influenced by donor age and cell passage. Interestingly, functional enrichment analysis indicated that advanced donor age and increased cell passage may enhance the production of miRNAs associated with organ development through various pathways. These findings suggest that donor age and cell expansion differentially influence ASC characteristics and sEV miRNA content, highlighting the need for disease-specific conditioning of ASCs to optimize the therapeutic effects of sEVs in clinical applications.</p><p><strong>Supplementary information: </strong>The online version contains supplementary material available at 10.1007/s10616-024-00675-6.</p>\",\"PeriodicalId\":10890,\"journal\":{\"name\":\"Cytotechnology\",\"volume\":\"77 1\",\"pages\":\"15\"},\"PeriodicalIF\":2.0000,\"publicationDate\":\"2025-02-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11631832/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Cytotechnology\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1007/s10616-024-00675-6\",\"RegionNum\":4,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2024/12/10 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q3\",\"JCRName\":\"BIOTECHNOLOGY & APPLIED MICROBIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cytotechnology","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1007/s10616-024-00675-6","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/12/10 0:00:00","PubModel":"Epub","JCR":"Q3","JCRName":"BIOTECHNOLOGY & APPLIED MICROBIOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

脂肪源性干细胞(ASCs)及其小细胞外囊泡(sev)由于其组织修复能力而具有重要的再生医学潜力。sev中的microRNA (miRNA)含量因ASC状态而异;然而,衰老和细胞传代对miRNA谱的影响尚不清楚。在这项研究中,我们研究了供体年龄和细胞扩增对三名年轻和三名老年供体的ASC特征和转录组的影响。细胞扩增显著损害了干细胞的特性,特别是降低了干细胞的增殖和分化能力。相比之下,供体年龄对ASCs的影响很小。RNA测序(RNA-seq)揭示了与干细胞、吞噬和受细胞扩增影响的代谢过程相关的基因表达差异。为了研究miRNA变异性,我们对从所有6个供者的ASCs中收集的sev进行了小rna测序。miRNA谱受供体年龄和细胞传代的影响。有趣的是,功能富集分析表明,供体年龄的增加和细胞传代的增加可能会通过各种途径增强与器官发育相关的mirna的产生。这些研究结果表明,供体年龄和细胞扩增对ASC特征和sEV miRNA含量有不同的影响,强调需要对ASC进行疾病特异性调节,以优化sEV在临床应用中的治疗效果。补充信息:在线版本包含补充资料,可在10.1007/s10616-024-00675-6获得。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Aging and cell expansion enhance microRNA diversity in small extracellular vesicles produced from human adipose-derived stem cells.

Adipose-derived stem cells (ASCs) and their small extracellular vesicles (sEVs) hold significant potential for regenerative medicine due to their tissue repair capabilities. The microRNA (miRNA) content in sEVs varies depending on ASC status; however, the effects of aging and cell passage on miRNA profiles remain unclear. In this study, we examined the effects of donor age and cell expansion on ASC characteristics and transcriptome using ASCs obtained from three young and three old donors. Cell expansion significantly impaired stem cell properties, notably reducing proliferation and differentiation capacities. In contrast, donor age had minimal effects on ASCs. RNA sequencing (RNA-seq) revealed differences in gene expression related to stemness, phagocytosis, and metabolic processes influenced by cell expansion. To investigate miRNA variability, we performed small RNA-seq on sEVs collected from ASCs of all six donors. The miRNA profiles were influenced by donor age and cell passage. Interestingly, functional enrichment analysis indicated that advanced donor age and increased cell passage may enhance the production of miRNAs associated with organ development through various pathways. These findings suggest that donor age and cell expansion differentially influence ASC characteristics and sEV miRNA content, highlighting the need for disease-specific conditioning of ASCs to optimize the therapeutic effects of sEVs in clinical applications.

Supplementary information: The online version contains supplementary material available at 10.1007/s10616-024-00675-6.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Cytotechnology
Cytotechnology 生物-生物工程与应用微生物
CiteScore
4.10
自引率
0.00%
发文量
49
审稿时长
6-12 weeks
期刊介绍: The scope of the Journal includes: 1. The derivation, genetic modification and characterization of cell lines, genetic and phenotypic regulation, control of cellular metabolism, cell physiology and biochemistry related to cell function, performance and expression of cell products. 2. Cell culture techniques, substrates, environmental requirements and optimization, cloning, hybridization and molecular biology, including genomic and proteomic tools. 3. Cell culture systems, processes, reactors, scale-up, and industrial production. Descriptions of the design or construction of equipment, media or quality control procedures, that are ancillary to cellular research. 4. The application of animal/human cells in research in the field of stem cell research including maintenance of stemness, differentiation, genetics, and senescence, cancer research, research in immunology, as well as applications in tissue engineering and gene therapy. 5. The use of cell cultures as a substrate for bioassays, biomedical applications and in particular as a replacement for animal models.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信