全长度转录组参考分析揭示了frischii真皮发育和嗅觉调节基因。

IF 2.3 2区 农林科学 Q3 BIOCHEMISTRY & MOLECULAR BIOLOGY
Gengwang Hu, Liangliang Li, Yifei Li, Shipeng Shao, Ruonan Zhang, Yundi Gao, Yi Guo, Yinghui Wang, Zhiya Gu, Yu Wang
{"title":"全长度转录组参考分析揭示了frischii真皮发育和嗅觉调节基因。","authors":"Gengwang Hu, Liangliang Li, Yifei Li, Shipeng Shao, Ruonan Zhang, Yundi Gao, Yi Guo, Yinghui Wang, Zhiya Gu, Yu Wang","doi":"10.1111/imb.12979","DOIUrl":null,"url":null,"abstract":"<p><p>Dermestes frischii Kugelann, 1792 is a storage pest worldwide, and is important for estimating the postmortem interval in forensic entomology. However, because of the lack of transcriptome and genome resources, population genetics and biological control studies on D. frischii have been hindered. Here, single-molecule real-time sequencing and next-generation sequencing were combined to generate the full-length transcriptome of the five developmental stages of D. frischii, namely egg, young larva, mature larva, pupa and adult. A total of 41,665 full-length non-chimeric sequences and 59,385 non-redundant transcripts were generated, of which 42,756 were annotated in public databases. Using the weighted gene co-expression network analysis, gene co-expression modules related to the five developmental stages were constructed and screened, and the genes in these modules were subjected to Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analyses. The expression patterns of the differentially expressed genes (DEGs) related to olfaction and insect hormone biosynthesis were also explored. Transcription of most odorant binding proteins was up-regulated in the adult stage, suggesting they are important for foraging in adults. Many genes encoding for the ecdysone-inducible protein were up-regulated in the pupal stage, may be mainly responsible for the tissue remodelling of metamorphosis. The results of the quantitative real-time polymerase chain reaction (qRT-PCR) were consistent with the RNA-seq results. This is the first full-length transcriptome sequencing of dermestids, and the data obtained here are vital for understanding the stage-specific development and olfactory system of D. frischii, providing valuable resources for storage pest and forensic research.</p>","PeriodicalId":13526,"journal":{"name":"Insect Molecular Biology","volume":" ","pages":""},"PeriodicalIF":2.3000,"publicationDate":"2024-12-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Full-length transcriptome-referenced analysis reveals developmental and olfactory regulatory genes in Dermestes frischii.\",\"authors\":\"Gengwang Hu, Liangliang Li, Yifei Li, Shipeng Shao, Ruonan Zhang, Yundi Gao, Yi Guo, Yinghui Wang, Zhiya Gu, Yu Wang\",\"doi\":\"10.1111/imb.12979\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Dermestes frischii Kugelann, 1792 is a storage pest worldwide, and is important for estimating the postmortem interval in forensic entomology. However, because of the lack of transcriptome and genome resources, population genetics and biological control studies on D. frischii have been hindered. Here, single-molecule real-time sequencing and next-generation sequencing were combined to generate the full-length transcriptome of the five developmental stages of D. frischii, namely egg, young larva, mature larva, pupa and adult. A total of 41,665 full-length non-chimeric sequences and 59,385 non-redundant transcripts were generated, of which 42,756 were annotated in public databases. Using the weighted gene co-expression network analysis, gene co-expression modules related to the five developmental stages were constructed and screened, and the genes in these modules were subjected to Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analyses. The expression patterns of the differentially expressed genes (DEGs) related to olfaction and insect hormone biosynthesis were also explored. Transcription of most odorant binding proteins was up-regulated in the adult stage, suggesting they are important for foraging in adults. Many genes encoding for the ecdysone-inducible protein were up-regulated in the pupal stage, may be mainly responsible for the tissue remodelling of metamorphosis. The results of the quantitative real-time polymerase chain reaction (qRT-PCR) were consistent with the RNA-seq results. This is the first full-length transcriptome sequencing of dermestids, and the data obtained here are vital for understanding the stage-specific development and olfactory system of D. frischii, providing valuable resources for storage pest and forensic research.</p>\",\"PeriodicalId\":13526,\"journal\":{\"name\":\"Insect Molecular Biology\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":2.3000,\"publicationDate\":\"2024-12-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Insect Molecular Biology\",\"FirstCategoryId\":\"97\",\"ListUrlMain\":\"https://doi.org/10.1111/imb.12979\",\"RegionNum\":2,\"RegionCategory\":\"农林科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"BIOCHEMISTRY & MOLECULAR BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Insect Molecular Biology","FirstCategoryId":"97","ListUrlMain":"https://doi.org/10.1111/imb.12979","RegionNum":2,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

frischii Kugelann, 1792是一种世界性的贮藏性害虫,在法医昆虫学中对估计死后时间间隔具有重要意义。然而,由于缺乏转录组和基因组资源,对褐飞虱的群体遗传学和生物防治研究一直受到阻碍。本研究采用单分子实时测序和下一代测序相结合的方法,获得了飞蛾卵、幼虫、成熟幼虫、蛹和成虫五个发育阶段的全基因组转录组。共生成全长非嵌合序列41,665条,非冗余转录本59,385条,其中42,756条已在公共数据库中标注。利用加权基因共表达网络分析,构建并筛选了与五个发育阶段相关的基因共表达模块,并对这些模块中的基因进行了基因本体(GO)和京都基因与基因组百科全书(KEGG)通路分析。并对嗅觉和昆虫激素合成相关的差异表达基因(DEGs)的表达模式进行了探讨。大多数气味结合蛋白的转录在成虫阶段上调,表明它们对成虫的觅食很重要。许多编码蜕皮激素诱导蛋白的基因在蛹期被上调,可能主要负责变态的组织重塑。实时定量聚合酶链反应(qRT-PCR)结果与RNA-seq结果一致。这是首个皮蝇的全长转录组测序,获得的数据对于了解皮蝇的阶段特异性发育和嗅觉系统至关重要,为储存害虫和法医研究提供了宝贵的资源。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Full-length transcriptome-referenced analysis reveals developmental and olfactory regulatory genes in Dermestes frischii.

Dermestes frischii Kugelann, 1792 is a storage pest worldwide, and is important for estimating the postmortem interval in forensic entomology. However, because of the lack of transcriptome and genome resources, population genetics and biological control studies on D. frischii have been hindered. Here, single-molecule real-time sequencing and next-generation sequencing were combined to generate the full-length transcriptome of the five developmental stages of D. frischii, namely egg, young larva, mature larva, pupa and adult. A total of 41,665 full-length non-chimeric sequences and 59,385 non-redundant transcripts were generated, of which 42,756 were annotated in public databases. Using the weighted gene co-expression network analysis, gene co-expression modules related to the five developmental stages were constructed and screened, and the genes in these modules were subjected to Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analyses. The expression patterns of the differentially expressed genes (DEGs) related to olfaction and insect hormone biosynthesis were also explored. Transcription of most odorant binding proteins was up-regulated in the adult stage, suggesting they are important for foraging in adults. Many genes encoding for the ecdysone-inducible protein were up-regulated in the pupal stage, may be mainly responsible for the tissue remodelling of metamorphosis. The results of the quantitative real-time polymerase chain reaction (qRT-PCR) were consistent with the RNA-seq results. This is the first full-length transcriptome sequencing of dermestids, and the data obtained here are vital for understanding the stage-specific development and olfactory system of D. frischii, providing valuable resources for storage pest and forensic research.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Insect Molecular Biology
Insect Molecular Biology 生物-昆虫学
CiteScore
4.80
自引率
3.80%
发文量
68
审稿时长
6-12 weeks
期刊介绍: Insect Molecular Biology has been dedicated to providing researchers with the opportunity to publish high quality original research on topics broadly related to insect molecular biology since 1992. IMB is particularly interested in publishing research in insect genomics/genes and proteomics/proteins. This includes research related to: • insect gene structure • control of gene expression • localisation and function/activity of proteins • interactions of proteins and ligands/substrates • effect of mutations on gene/protein function • evolution of insect genes/genomes, especially where principles relevant to insects in general are established • molecular population genetics where data are used to identify genes (or regions of genomes) involved in specific adaptations • gene mapping using molecular tools • molecular interactions of insects with microorganisms including Wolbachia, symbionts and viruses or other pathogens transmitted by insects Papers can include large data sets e.g.from micro-array or proteomic experiments or analyses of genome sequences done in silico (subject to the data being placed in the context of hypothesis testing).
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信