stutzeri假单胞菌漆酶的优化生产及其对生物质木质素的生物降解。

IF 2.4 4区 生物学 Q3 BIOTECHNOLOGY & APPLIED MICROBIOLOGY
Waqar Rasool Minhas, Saira Bashir, Cheng Zhang, Ahmad Raza
{"title":"stutzeri假单胞菌漆酶的优化生产及其对生物质木质素的生物降解。","authors":"Waqar Rasool Minhas, Saira Bashir, Cheng Zhang, Ahmad Raza","doi":"10.1007/s12223-024-01232-6","DOIUrl":null,"url":null,"abstract":"<p><p>Laccases are multi-copper oxidases that play an important role in the biodegradation of phenolic compounds, lignin, dye, and wastes. Here, we report the screening of potential laccase-producing indigenous bacterial isolates and subsequent optimization of laccase production using crop residues as cheap supplementary energy sources. Among 16 bacterial isolates, seven were selected based on the appearance of reddish-brown bacterial colonies and guaiacol oxidation assay after 10 days of incubation at 37 °C. The maximum laccase activity (2.755 U/mL) was observed for bacterial isolate WR2. Response surface methodology (RSM) was used to maximize laccase production from WR2, identified as Pseudomonas stutzeri. Plackett-Burman design (PBD) was employed to design production runs involving various factors including time, pH, inoculum, wheat straw, cotton stalk, wheat bran, rice straw, copper sulfate, sugarcane bagasse, yeast extract, and peptone. The interactions of different factors were analyzed from the responses (laccase enzyme activity, etc.) in 12 experimental runs. In experimental run 4, the maximum laccase enzymatic activity (1.86 U/mL) was achieved after a 10-day incubation with wheat straw (1%) and cotton stalk (1%) at pH 6.8 and 37 °C, and high-degree lignin degradation was evident from a substantial reduction in the FTIR aromatic stretching peak of the degraded biomass.</p>","PeriodicalId":12346,"journal":{"name":"Folia microbiologica","volume":" ","pages":""},"PeriodicalIF":2.4000,"publicationDate":"2024-12-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Optimized production of laccase from Pseudomonas stutzeri and its biodegradation of lignin in biomass.\",\"authors\":\"Waqar Rasool Minhas, Saira Bashir, Cheng Zhang, Ahmad Raza\",\"doi\":\"10.1007/s12223-024-01232-6\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Laccases are multi-copper oxidases that play an important role in the biodegradation of phenolic compounds, lignin, dye, and wastes. Here, we report the screening of potential laccase-producing indigenous bacterial isolates and subsequent optimization of laccase production using crop residues as cheap supplementary energy sources. Among 16 bacterial isolates, seven were selected based on the appearance of reddish-brown bacterial colonies and guaiacol oxidation assay after 10 days of incubation at 37 °C. The maximum laccase activity (2.755 U/mL) was observed for bacterial isolate WR2. Response surface methodology (RSM) was used to maximize laccase production from WR2, identified as Pseudomonas stutzeri. Plackett-Burman design (PBD) was employed to design production runs involving various factors including time, pH, inoculum, wheat straw, cotton stalk, wheat bran, rice straw, copper sulfate, sugarcane bagasse, yeast extract, and peptone. The interactions of different factors were analyzed from the responses (laccase enzyme activity, etc.) in 12 experimental runs. In experimental run 4, the maximum laccase enzymatic activity (1.86 U/mL) was achieved after a 10-day incubation with wheat straw (1%) and cotton stalk (1%) at pH 6.8 and 37 °C, and high-degree lignin degradation was evident from a substantial reduction in the FTIR aromatic stretching peak of the degraded biomass.</p>\",\"PeriodicalId\":12346,\"journal\":{\"name\":\"Folia microbiologica\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":2.4000,\"publicationDate\":\"2024-12-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Folia microbiologica\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1007/s12223-024-01232-6\",\"RegionNum\":4,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"BIOTECHNOLOGY & APPLIED MICROBIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Folia microbiologica","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1007/s12223-024-01232-6","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"BIOTECHNOLOGY & APPLIED MICROBIOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

漆酶是一种多铜氧化酶,在酚类化合物、木质素、染料和废物的生物降解中起重要作用。在这里,我们报道了潜在的产生漆酶的本土细菌分离株的筛选和随后的优化漆酶生产利用作物秸秆作为廉价的补充能源。在37℃培养10天后,根据菌落呈红褐色的外观和愈创木酚氧化测定,从16株分离菌中筛选出7株。菌株WR2的漆酶活性最高,为2.755 U/mL。利用响应面法(RSM)对菌株WR2的漆酶产量进行了优化。采用Plackett-Burman设计(PBD)设计了包括时间、pH、接种量、麦秸、棉秆、麦麸、稻草、硫酸铜、甘蔗渣、酵母膏和蛋白胨在内的多种因素的生产流程。从12次试验的反应(漆酶活性等)分析了不同因素的相互作用。在实验4中,在pH 6.8和37℃条件下,与麦秸(1%)和棉秆(1%)分别培养10天后,漆酶活性达到最高(1.86 U/mL),降解生物量的FTIR芳香拉伸峰大幅降低,可见木质素的高度降解。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Optimized production of laccase from Pseudomonas stutzeri and its biodegradation of lignin in biomass.

Laccases are multi-copper oxidases that play an important role in the biodegradation of phenolic compounds, lignin, dye, and wastes. Here, we report the screening of potential laccase-producing indigenous bacterial isolates and subsequent optimization of laccase production using crop residues as cheap supplementary energy sources. Among 16 bacterial isolates, seven were selected based on the appearance of reddish-brown bacterial colonies and guaiacol oxidation assay after 10 days of incubation at 37 °C. The maximum laccase activity (2.755 U/mL) was observed for bacterial isolate WR2. Response surface methodology (RSM) was used to maximize laccase production from WR2, identified as Pseudomonas stutzeri. Plackett-Burman design (PBD) was employed to design production runs involving various factors including time, pH, inoculum, wheat straw, cotton stalk, wheat bran, rice straw, copper sulfate, sugarcane bagasse, yeast extract, and peptone. The interactions of different factors were analyzed from the responses (laccase enzyme activity, etc.) in 12 experimental runs. In experimental run 4, the maximum laccase enzymatic activity (1.86 U/mL) was achieved after a 10-day incubation with wheat straw (1%) and cotton stalk (1%) at pH 6.8 and 37 °C, and high-degree lignin degradation was evident from a substantial reduction in the FTIR aromatic stretching peak of the degraded biomass.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Folia microbiologica
Folia microbiologica 工程技术-生物工程与应用微生物
CiteScore
5.80
自引率
0.00%
发文量
82
审稿时长
6-12 weeks
期刊介绍: Unlike journals which specialize ever more narrowly, Folia Microbiologica (FM) takes an open approach that spans general, soil, medical and industrial microbiology, plus some branches of immunology. This English-language journal publishes original papers, reviews and mini-reviews, short communications and book reviews. The coverage includes cutting-edge methods and promising new topics, as well as studies using established methods that exhibit promise in practical applications such as medicine, animal husbandry and more. The coverage of FM is expanding beyond Central and Eastern Europe, with a growing proportion of its contents contributed by international authors.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信