术前活检检测黏液成分对结直肠癌黏液性腺癌的预测。

IF 2.3 3区 医学 Q2 RADIOLOGY, NUCLEAR MEDICINE & MEDICAL IMAGING
Tong Ling, Zhichao Zuo, Mingwei Huang, Liucheng Wu, Jie Ma, Xiaoliang Huang, Weizhong Tang
{"title":"术前活检检测黏液成分对结直肠癌黏液性腺癌的预测。","authors":"Tong Ling, Zhichao Zuo, Mingwei Huang, Liucheng Wu, Jie Ma, Xiaoliang Huang, Weizhong Tang","doi":"10.1007/s00261-024-04743-5","DOIUrl":null,"url":null,"abstract":"<p><strong>Objectives: </strong>Endoscopic biopsy diagnosis for the preoperative assessment of mucinous components in patients with colorectal cancer is limited. This study investigated a radiomics model and established an explainable prediction model by using machine learning to differentiate between adenocarcinoma with mucinous components and mucinous adenocarcinoma.</p><p><strong>Methods: </strong>The derivation cohort included 312 patients with colorectal cancer with mucinous components detected during preoperative endoscopic biopsy diagnosis. These patients were randomly divided into training and validation sets in a 7:3 ratio. Radiomics features were extracted, followed by feature engineering, to create a radiomic score (radscore). Subsequently, 24 features, including the radscore, clinical data, and serological characteristics, were used to develop machine learning models by using nine different machine learning algorithms. The SHapley Additive exPlanation (SHAP) method was employed to elucidate the workings of the machine learning models and visualize individual variable predictions.</p><p><strong>Results: </strong>The radiomics model achieved an area under the curve (AUC) of 0.810. The random forest model outperformed the other models and had the highest AUC of 0.832; thus, this model was defined as the hybrid model. The clinical model, which was built using clinical data and serological characteristics, had an AUC of 0.732, whereas the radiomics model achieved an AUC of 0.810. SHAP model interpretation revealed that among the 14 features with non-zero SHAP values, the radscore and clinical T stage had notably higher values.</p><p><strong>Conclusion: </strong>This interpretable predictive model effectively differentiates between adenocarcinoma with mucinous components and mucinous adenocarcinoma in patients with colorectal cancer, thereby facilitating informed treatment decisions for individuals in whom mucinous components are identified during preoperative biopsy diagnosis.</p>","PeriodicalId":7126,"journal":{"name":"Abdominal Radiology","volume":" ","pages":""},"PeriodicalIF":2.3000,"publicationDate":"2024-12-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Prediction of mucinous adenocarcinoma in colorectal cancer with mucinous components detected in preoperative biopsy diagnosis.\",\"authors\":\"Tong Ling, Zhichao Zuo, Mingwei Huang, Liucheng Wu, Jie Ma, Xiaoliang Huang, Weizhong Tang\",\"doi\":\"10.1007/s00261-024-04743-5\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Objectives: </strong>Endoscopic biopsy diagnosis for the preoperative assessment of mucinous components in patients with colorectal cancer is limited. This study investigated a radiomics model and established an explainable prediction model by using machine learning to differentiate between adenocarcinoma with mucinous components and mucinous adenocarcinoma.</p><p><strong>Methods: </strong>The derivation cohort included 312 patients with colorectal cancer with mucinous components detected during preoperative endoscopic biopsy diagnosis. These patients were randomly divided into training and validation sets in a 7:3 ratio. Radiomics features were extracted, followed by feature engineering, to create a radiomic score (radscore). Subsequently, 24 features, including the radscore, clinical data, and serological characteristics, were used to develop machine learning models by using nine different machine learning algorithms. The SHapley Additive exPlanation (SHAP) method was employed to elucidate the workings of the machine learning models and visualize individual variable predictions.</p><p><strong>Results: </strong>The radiomics model achieved an area under the curve (AUC) of 0.810. The random forest model outperformed the other models and had the highest AUC of 0.832; thus, this model was defined as the hybrid model. The clinical model, which was built using clinical data and serological characteristics, had an AUC of 0.732, whereas the radiomics model achieved an AUC of 0.810. SHAP model interpretation revealed that among the 14 features with non-zero SHAP values, the radscore and clinical T stage had notably higher values.</p><p><strong>Conclusion: </strong>This interpretable predictive model effectively differentiates between adenocarcinoma with mucinous components and mucinous adenocarcinoma in patients with colorectal cancer, thereby facilitating informed treatment decisions for individuals in whom mucinous components are identified during preoperative biopsy diagnosis.</p>\",\"PeriodicalId\":7126,\"journal\":{\"name\":\"Abdominal Radiology\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":2.3000,\"publicationDate\":\"2024-12-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Abdominal Radiology\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1007/s00261-024-04743-5\",\"RegionNum\":3,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"RADIOLOGY, NUCLEAR MEDICINE & MEDICAL IMAGING\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Abdominal Radiology","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1007/s00261-024-04743-5","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"RADIOLOGY, NUCLEAR MEDICINE & MEDICAL IMAGING","Score":null,"Total":0}
引用次数: 0

摘要

目的:内镜活检诊断对结直肠癌患者粘液成分的术前评估是有限的。本研究研究了放射组学模型,并利用机器学习建立了一个可解释的预测模型来区分带有黏液成分的腺癌和黏液性腺癌。方法:衍生队列纳入312例术前内镜活检检查出黏液成分的结直肠癌患者。这些患者按7:3的比例随机分为训练组和验证组。提取放射组学特征,然后进行特征工程,以创建放射组学评分(radscore)。随后,通过使用9种不同的机器学习算法,使用包括radscore、临床数据和血清学特征在内的24个特征来开发机器学习模型。采用SHapley加性解释(SHAP)方法来阐明机器学习模型的工作原理,并将单个变量预测可视化。结果:放射组学模型的曲线下面积(AUC)为0.810。随机森林模型的AUC最高,为0.832;因此,将该模型定义为混合模型。使用临床数据和血清学特征构建的临床模型的AUC为0.732,而放射组学模型的AUC为0.810。SHAP模型解释显示,在14个SHAP值为非零的特征中,radscore和临床T分期值明显较高。结论:该可解释的预测模型可有效区分结直肠癌患者中带有黏液成分的腺癌和黏液性腺癌,从而为术前活检诊断中发现黏液成分的个体提供知情的治疗决策。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Prediction of mucinous adenocarcinoma in colorectal cancer with mucinous components detected in preoperative biopsy diagnosis.

Objectives: Endoscopic biopsy diagnosis for the preoperative assessment of mucinous components in patients with colorectal cancer is limited. This study investigated a radiomics model and established an explainable prediction model by using machine learning to differentiate between adenocarcinoma with mucinous components and mucinous adenocarcinoma.

Methods: The derivation cohort included 312 patients with colorectal cancer with mucinous components detected during preoperative endoscopic biopsy diagnosis. These patients were randomly divided into training and validation sets in a 7:3 ratio. Radiomics features were extracted, followed by feature engineering, to create a radiomic score (radscore). Subsequently, 24 features, including the radscore, clinical data, and serological characteristics, were used to develop machine learning models by using nine different machine learning algorithms. The SHapley Additive exPlanation (SHAP) method was employed to elucidate the workings of the machine learning models and visualize individual variable predictions.

Results: The radiomics model achieved an area under the curve (AUC) of 0.810. The random forest model outperformed the other models and had the highest AUC of 0.832; thus, this model was defined as the hybrid model. The clinical model, which was built using clinical data and serological characteristics, had an AUC of 0.732, whereas the radiomics model achieved an AUC of 0.810. SHAP model interpretation revealed that among the 14 features with non-zero SHAP values, the radscore and clinical T stage had notably higher values.

Conclusion: This interpretable predictive model effectively differentiates between adenocarcinoma with mucinous components and mucinous adenocarcinoma in patients with colorectal cancer, thereby facilitating informed treatment decisions for individuals in whom mucinous components are identified during preoperative biopsy diagnosis.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Abdominal Radiology
Abdominal Radiology Medicine-Radiology, Nuclear Medicine and Imaging
CiteScore
5.20
自引率
8.30%
发文量
334
期刊介绍: Abdominal Radiology seeks to meet the professional needs of the abdominal radiologist by publishing clinically pertinent original, review and practice related articles on the gastrointestinal and genitourinary tracts and abdominal interventional and radiologic procedures. Case reports are generally not accepted unless they are the first report of a new disease or condition, or part of a special solicited section. Reasons to Publish Your Article in Abdominal Radiology: · Official journal of the Society of Abdominal Radiology (SAR) · Published in Cooperation with: European Society of Gastrointestinal and Abdominal Radiology (ESGAR) European Society of Urogenital Radiology (ESUR) Asian Society of Abdominal Radiology (ASAR) · Efficient handling and Expeditious review · Author feedback is provided in a mentoring style · Global readership · Readers can earn CME credits
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信