非局部势能面简单高效的等变消息传递神经网络模型。

IF 2.8 2区 化学 Q3 CHEMISTRY, PHYSICAL
The Journal of Physical Chemistry A Pub Date : 2024-12-26 Epub Date: 2024-12-12 DOI:10.1021/acs.jpca.4c06669
Yibin Wu, Junfan Xia, Yaolong Zhang, Bin Jiang
{"title":"非局部势能面简单高效的等变消息传递神经网络模型。","authors":"Yibin Wu, Junfan Xia, Yaolong Zhang, Bin Jiang","doi":"10.1021/acs.jpca.4c06669","DOIUrl":null,"url":null,"abstract":"<p><p>Machine learning potential has become increasingly successful in atomistic simulations. Many of these potentials are based on an atomistic representation in a local environment, but an efficient description of nonlocal interactions that exceed a common local environment remains a challenge. Herein, we propose a simple and efficient equivariant model, EquiREANN, to effectively represent a nonlocal potential energy surface. It relies on a physically inspired message-passing framework, where the fundamental descriptors are linear combinations of atomic orbitals, while both invariant orbital coefficients and the equivariant orbital functions are iteratively updated. We demonstrate that this EquiREANN model is able to describe the subtle potential energy variation due to the nonlocal structural change with high accuracy and little extra computational cost than an invariant message passing model. Our work offers a generalized approach to create equivariant message-passing adaptations of other advanced local many-body descriptors.</p>","PeriodicalId":59,"journal":{"name":"The Journal of Physical Chemistry A","volume":" ","pages":"11061-11067"},"PeriodicalIF":2.8000,"publicationDate":"2024-12-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Simple and Efficient Equivariant Message-Passing Neural Network Model for Non-local Potential Energy Surfaces.\",\"authors\":\"Yibin Wu, Junfan Xia, Yaolong Zhang, Bin Jiang\",\"doi\":\"10.1021/acs.jpca.4c06669\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Machine learning potential has become increasingly successful in atomistic simulations. Many of these potentials are based on an atomistic representation in a local environment, but an efficient description of nonlocal interactions that exceed a common local environment remains a challenge. Herein, we propose a simple and efficient equivariant model, EquiREANN, to effectively represent a nonlocal potential energy surface. It relies on a physically inspired message-passing framework, where the fundamental descriptors are linear combinations of atomic orbitals, while both invariant orbital coefficients and the equivariant orbital functions are iteratively updated. We demonstrate that this EquiREANN model is able to describe the subtle potential energy variation due to the nonlocal structural change with high accuracy and little extra computational cost than an invariant message passing model. Our work offers a generalized approach to create equivariant message-passing adaptations of other advanced local many-body descriptors.</p>\",\"PeriodicalId\":59,\"journal\":{\"name\":\"The Journal of Physical Chemistry A\",\"volume\":\" \",\"pages\":\"11061-11067\"},\"PeriodicalIF\":2.8000,\"publicationDate\":\"2024-12-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"The Journal of Physical Chemistry A\",\"FirstCategoryId\":\"1\",\"ListUrlMain\":\"https://doi.org/10.1021/acs.jpca.4c06669\",\"RegionNum\":2,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2024/12/12 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q3\",\"JCRName\":\"CHEMISTRY, PHYSICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"The Journal of Physical Chemistry A","FirstCategoryId":"1","ListUrlMain":"https://doi.org/10.1021/acs.jpca.4c06669","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/12/12 0:00:00","PubModel":"Epub","JCR":"Q3","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

摘要

机器学习的潜力在原子模拟中变得越来越成功。这些潜力中的许多都是基于局部环境中的原子表示,但是对超出共同局部环境的非局部相互作用的有效描述仍然是一个挑战。在此,我们提出了一个简单有效的等变模型EquiREANN来有效地表示非局部势能面。它依赖于物理启发的消息传递框架,其中基本描述符是原子轨道的线性组合,而不变轨道系数和等变轨道函数都是迭代更新的。结果表明,与不变的消息传递模型相比,EquiREANN模型能够准确地描述由非局部结构变化引起的细微势能变化,并且计算成本较低。我们的工作提供了一种通用的方法来创建其他高级局部多体描述符的等变消息传递适应。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Simple and Efficient Equivariant Message-Passing Neural Network Model for Non-local Potential Energy Surfaces.

Machine learning potential has become increasingly successful in atomistic simulations. Many of these potentials are based on an atomistic representation in a local environment, but an efficient description of nonlocal interactions that exceed a common local environment remains a challenge. Herein, we propose a simple and efficient equivariant model, EquiREANN, to effectively represent a nonlocal potential energy surface. It relies on a physically inspired message-passing framework, where the fundamental descriptors are linear combinations of atomic orbitals, while both invariant orbital coefficients and the equivariant orbital functions are iteratively updated. We demonstrate that this EquiREANN model is able to describe the subtle potential energy variation due to the nonlocal structural change with high accuracy and little extra computational cost than an invariant message passing model. Our work offers a generalized approach to create equivariant message-passing adaptations of other advanced local many-body descriptors.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
The Journal of Physical Chemistry A
The Journal of Physical Chemistry A 化学-物理:原子、分子和化学物理
CiteScore
5.20
自引率
10.30%
发文量
922
审稿时长
1.3 months
期刊介绍: The Journal of Physical Chemistry A is devoted to reporting new and original experimental and theoretical basic research of interest to physical chemists, biophysical chemists, and chemical physicists.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信