代谢组学老化加速和体重指数表型与死亡率和肥胖相关发病率的关联。

IF 8 1区 医学 Q1 CELL BIOLOGY
Aging Cell Pub Date : 2024-12-12 DOI:10.1111/acel.14435
Xiaomin Zeng, Ruiye Chen, Danli Shi, Xiayin Zhang, Ting Su, Yaxin Wang, Yijun Hu, Mingguang He, Honghua Yu, Xianwen Shang
{"title":"代谢组学老化加速和体重指数表型与死亡率和肥胖相关发病率的关联。","authors":"Xiaomin Zeng, Ruiye Chen, Danli Shi, Xiayin Zhang, Ting Su, Yaxin Wang, Yijun Hu, Mingguang He, Honghua Yu, Xianwen Shang","doi":"10.1111/acel.14435","DOIUrl":null,"url":null,"abstract":"<p><p>This study aims to investigate the association between metabolomic aging acceleration and body mass index (BMI) phenotypes with mortality and obesity-related morbidities (ORMs). 85,458 participants were included from the UK Biobank. Metabolomic age was determined using 168 metabolites. The Chronological Age-Adjusted Gap was used to define metabolomically younger (MY) or older (MO) status. BMI categories were defined as normal weight, overweight, and obese. Participants were categorized into MY normal weight (MY-NW, reference), MY overweight (MY-OW), MY obesity (MY-OB), MO normal weight (MO-NW), MO overweight (MO-OW), and MO obesity (MO-OB). Mortality and 43 ORMs were identified through death registries and hospitalization records. Compared with MY-NW phenotype, MO-OB phenotype yielded increased risk of mortality and 32 ORMs, followed by MO-OW with mortality and 27 ORMs, MY-OB with mortality and 26 ORMs, MY-OW with 21 ORMs, and MO-NW with mortality and 14 ORMs. Consistently, MO-OB phenotype showed the highest risk of developing obesity-related multimorbidities, followed by MY-OB phenotype, MO-OW phenotype, MY-OW phenotype, and MO-NW phenotype. Additive interactions were found between metabolomic aging acceleration and obesity on CVD-specific mortality and 10 ORMs. Additionally, individuals with metabolomic aging acceleration had higher mortality and cardiovascular risk, even within the same BMI category. These findings suggest that metabolomic aging acceleration could help stratify mortality and ORMs risk across different BMI categories. Weight management should also be extended to individuals with overweight or obesity even in the absence of accelerated metabolomic aging, as they face increased healthy risk compared with MY-NW individuals. Additionally, delaying metabolic aging acceleration is needed for all metabolomically older groups, including those with normal weight.</p>","PeriodicalId":119,"journal":{"name":"Aging Cell","volume":" ","pages":"e14435"},"PeriodicalIF":8.0000,"publicationDate":"2024-12-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Association of metabolomic aging acceleration and body mass index phenotypes with mortality and obesity-related morbidities.\",\"authors\":\"Xiaomin Zeng, Ruiye Chen, Danli Shi, Xiayin Zhang, Ting Su, Yaxin Wang, Yijun Hu, Mingguang He, Honghua Yu, Xianwen Shang\",\"doi\":\"10.1111/acel.14435\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>This study aims to investigate the association between metabolomic aging acceleration and body mass index (BMI) phenotypes with mortality and obesity-related morbidities (ORMs). 85,458 participants were included from the UK Biobank. Metabolomic age was determined using 168 metabolites. The Chronological Age-Adjusted Gap was used to define metabolomically younger (MY) or older (MO) status. BMI categories were defined as normal weight, overweight, and obese. Participants were categorized into MY normal weight (MY-NW, reference), MY overweight (MY-OW), MY obesity (MY-OB), MO normal weight (MO-NW), MO overweight (MO-OW), and MO obesity (MO-OB). Mortality and 43 ORMs were identified through death registries and hospitalization records. Compared with MY-NW phenotype, MO-OB phenotype yielded increased risk of mortality and 32 ORMs, followed by MO-OW with mortality and 27 ORMs, MY-OB with mortality and 26 ORMs, MY-OW with 21 ORMs, and MO-NW with mortality and 14 ORMs. Consistently, MO-OB phenotype showed the highest risk of developing obesity-related multimorbidities, followed by MY-OB phenotype, MO-OW phenotype, MY-OW phenotype, and MO-NW phenotype. Additive interactions were found between metabolomic aging acceleration and obesity on CVD-specific mortality and 10 ORMs. Additionally, individuals with metabolomic aging acceleration had higher mortality and cardiovascular risk, even within the same BMI category. These findings suggest that metabolomic aging acceleration could help stratify mortality and ORMs risk across different BMI categories. Weight management should also be extended to individuals with overweight or obesity even in the absence of accelerated metabolomic aging, as they face increased healthy risk compared with MY-NW individuals. Additionally, delaying metabolic aging acceleration is needed for all metabolomically older groups, including those with normal weight.</p>\",\"PeriodicalId\":119,\"journal\":{\"name\":\"Aging Cell\",\"volume\":\" \",\"pages\":\"e14435\"},\"PeriodicalIF\":8.0000,\"publicationDate\":\"2024-12-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Aging Cell\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1111/acel.14435\",\"RegionNum\":1,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CELL BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Aging Cell","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1111/acel.14435","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CELL BIOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

本研究旨在探讨代谢组学老化加速和身体质量指数(BMI)表型与死亡率和肥胖相关发病率(orm)之间的关系。85,458名参与者来自英国生物银行。使用168种代谢物测定代谢组年龄。按时间顺序调整年龄差距用于定义代谢年轻(MY)或老年(MO)状态。BMI分类定义为正常体重、超重和肥胖。参与者被分为正常体重组(MY- nw,参考)、超重组(MY- ow)、肥胖组(MY- ob)、正常体重组(MO- nw)、超重组(MO- ow)和肥胖组(MO- ob)。通过死亡登记和住院记录确定了死亡率和43例orm。与MY-NW表型相比,MO-OB表型导致死亡和32例orm的风险增加,其次是MO-OW死亡率和27例orm, MY-OB死亡率和26例orm, MY-OW死亡率和21例orm, MO-NW死亡率和14例orm。一致地,MO-OB表型显示出发生肥胖相关多种疾病的最高风险,其次是MY-OB表型,MO-OW表型,MY-OW表型和MO-NW表型。代谢组学老化加速和肥胖对cvd特异性死亡率和10个orm的影响存在叠加性相互作用。此外,即使在相同的BMI类别中,代谢组学衰老加速的个体也有更高的死亡率和心血管风险。这些发现表明,代谢组学衰老加速可以帮助对不同BMI类别的死亡率和orm风险进行分层。体重管理也应扩展到超重或肥胖的个体,即使没有加速代谢组学衰老,因为他们面临的健康风险比MY-NW个体增加。此外,延缓新陈代谢老化加速对所有代谢老年群体都是必要的,包括那些体重正常的人。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Association of metabolomic aging acceleration and body mass index phenotypes with mortality and obesity-related morbidities.

This study aims to investigate the association between metabolomic aging acceleration and body mass index (BMI) phenotypes with mortality and obesity-related morbidities (ORMs). 85,458 participants were included from the UK Biobank. Metabolomic age was determined using 168 metabolites. The Chronological Age-Adjusted Gap was used to define metabolomically younger (MY) or older (MO) status. BMI categories were defined as normal weight, overweight, and obese. Participants were categorized into MY normal weight (MY-NW, reference), MY overweight (MY-OW), MY obesity (MY-OB), MO normal weight (MO-NW), MO overweight (MO-OW), and MO obesity (MO-OB). Mortality and 43 ORMs were identified through death registries and hospitalization records. Compared with MY-NW phenotype, MO-OB phenotype yielded increased risk of mortality and 32 ORMs, followed by MO-OW with mortality and 27 ORMs, MY-OB with mortality and 26 ORMs, MY-OW with 21 ORMs, and MO-NW with mortality and 14 ORMs. Consistently, MO-OB phenotype showed the highest risk of developing obesity-related multimorbidities, followed by MY-OB phenotype, MO-OW phenotype, MY-OW phenotype, and MO-NW phenotype. Additive interactions were found between metabolomic aging acceleration and obesity on CVD-specific mortality and 10 ORMs. Additionally, individuals with metabolomic aging acceleration had higher mortality and cardiovascular risk, even within the same BMI category. These findings suggest that metabolomic aging acceleration could help stratify mortality and ORMs risk across different BMI categories. Weight management should also be extended to individuals with overweight or obesity even in the absence of accelerated metabolomic aging, as they face increased healthy risk compared with MY-NW individuals. Additionally, delaying metabolic aging acceleration is needed for all metabolomically older groups, including those with normal weight.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Aging Cell
Aging Cell Biochemistry, Genetics and Molecular Biology-Cell Biology
自引率
2.60%
发文量
212
期刊介绍: Aging Cell is an Open Access journal that focuses on the core aspects of the biology of aging, encompassing the entire spectrum of geroscience. The journal's content is dedicated to publishing research that uncovers the mechanisms behind the aging process and explores the connections between aging and various age-related diseases. This journal aims to provide a comprehensive understanding of the biological underpinnings of aging and its implications for human health. The journal is widely recognized and its content is abstracted and indexed by numerous databases and services, which facilitates its accessibility and impact in the scientific community. These include: Academic Search (EBSCO Publishing) Academic Search Alumni Edition (EBSCO Publishing) Academic Search Premier (EBSCO Publishing) Biological Science Database (ProQuest) CAS: Chemical Abstracts Service (ACS) Embase (Elsevier) InfoTrac (GALE Cengage) Ingenta Select ISI Alerting Services Journal Citation Reports/Science Edition (Clarivate Analytics) MEDLINE/PubMed (NLM) Natural Science Collection (ProQuest) PubMed Dietary Supplement Subset (NLM) Science Citation Index Expanded (Clarivate Analytics) SciTech Premium Collection (ProQuest) Web of Science (Clarivate Analytics) Being indexed in these databases ensures that the research published in Aging Cell is discoverable by researchers, clinicians, and other professionals interested in the field of aging and its associated health issues. This broad coverage helps to disseminate the journal's findings and contributes to the advancement of knowledge in geroscience.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信