阳离子多肽液-液相分离凝聚物中富含嘌呤和嘧啶的RNA的鉴别及人工拥挤剂的影响。

IF 5.5 2区 化学 Q1 BIOCHEMISTRY & MOLECULAR BIOLOGY
Biomacromolecules Pub Date : 2025-01-13 Epub Date: 2024-12-11 DOI:10.1021/acs.biomac.4c01282
Anika L Moller, Isis A Middleton, Grace E Maynard, Lachlan B Cox, Anna Wang, Hsiu L Li, Pall Thordarson
{"title":"阳离子多肽液-液相分离凝聚物中富含嘌呤和嘧啶的RNA的鉴别及人工拥挤剂的影响。","authors":"Anika L Moller, Isis A Middleton, Grace E Maynard, Lachlan B Cox, Anna Wang, Hsiu L Li, Pall Thordarson","doi":"10.1021/acs.biomac.4c01282","DOIUrl":null,"url":null,"abstract":"<p><p>Membraneless organelles, often referred to as condensates or coacervates, are liquid-liquid phase-separated systems formed between noncoding RNAs and intrinsically disordered proteins. While the importance of different amino acid residues in short peptide-based condensates has been investigated, the role of the individual nucleobases or the type of heterocyclic structures, the purine vs pyrimidine nucleobases, is less researched. The cell's crowded environment has been mimicked <i>in vitro</i> to demonstrate its ability to induce the formation of condensates, but more research in this area is required, especially with respect to RNA-facilitated phase separation and the properties of the crowding agent, poly(ethylene glycol) (PEG). Herein, we have shown that the nucleotide base sequence of RNA can greatly influence its propensity to undergo phase separation with cationic peptides, with the purine-only RNA decamer <b>(AG)</b><sub><b>5</b></sub> readily doing so while the pyrimidine-only <b>(CU)</b><sub><b>5</b></sub> does not. Furthermore, we show that the presence and size of a PEG macromolecular crowder affects both the ability to phase separate and the stability of coacervates formed, possibly due to co-condensation of PEG with the RNA and peptides. This work sheds light on the presence of low-complexity long purine- or pyrimidine-rich noncomplementary repeat (AG or CU) sequences in various noncoding RNAs found in biology.</p>","PeriodicalId":30,"journal":{"name":"Biomacromolecules","volume":" ","pages":"470-479"},"PeriodicalIF":5.5000,"publicationDate":"2025-01-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Discrimination between Purine and Pyrimidine-Rich RNA in Liquid-Liquid Phase-Separated Condensates with Cationic Peptides and the Effect of Artificial Crowding Agents.\",\"authors\":\"Anika L Moller, Isis A Middleton, Grace E Maynard, Lachlan B Cox, Anna Wang, Hsiu L Li, Pall Thordarson\",\"doi\":\"10.1021/acs.biomac.4c01282\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Membraneless organelles, often referred to as condensates or coacervates, are liquid-liquid phase-separated systems formed between noncoding RNAs and intrinsically disordered proteins. While the importance of different amino acid residues in short peptide-based condensates has been investigated, the role of the individual nucleobases or the type of heterocyclic structures, the purine vs pyrimidine nucleobases, is less researched. The cell's crowded environment has been mimicked <i>in vitro</i> to demonstrate its ability to induce the formation of condensates, but more research in this area is required, especially with respect to RNA-facilitated phase separation and the properties of the crowding agent, poly(ethylene glycol) (PEG). Herein, we have shown that the nucleotide base sequence of RNA can greatly influence its propensity to undergo phase separation with cationic peptides, with the purine-only RNA decamer <b>(AG)</b><sub><b>5</b></sub> readily doing so while the pyrimidine-only <b>(CU)</b><sub><b>5</b></sub> does not. Furthermore, we show that the presence and size of a PEG macromolecular crowder affects both the ability to phase separate and the stability of coacervates formed, possibly due to co-condensation of PEG with the RNA and peptides. This work sheds light on the presence of low-complexity long purine- or pyrimidine-rich noncomplementary repeat (AG or CU) sequences in various noncoding RNAs found in biology.</p>\",\"PeriodicalId\":30,\"journal\":{\"name\":\"Biomacromolecules\",\"volume\":\" \",\"pages\":\"470-479\"},\"PeriodicalIF\":5.5000,\"publicationDate\":\"2025-01-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Biomacromolecules\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://doi.org/10.1021/acs.biomac.4c01282\",\"RegionNum\":2,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2024/12/11 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q1\",\"JCRName\":\"BIOCHEMISTRY & MOLECULAR BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biomacromolecules","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1021/acs.biomac.4c01282","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/12/11 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

无膜细胞器,通常被称为凝聚体或凝聚体,是在非编码rna和内在无序蛋白质之间形成的液-液相分离系统。虽然研究了短肽基凝聚物中不同氨基酸残基的重要性,但对单个核碱基或杂环结构类型(嘌呤与嘧啶核碱基)的作用研究较少。细胞的拥挤环境已经在体外模拟,以证明其诱导凝聚物形成的能力,但在这一领域还需要更多的研究,特别是关于rna促进的相分离和拥挤剂聚乙二醇(PEG)的性质。在这里,我们已经证明了RNA的核苷酸碱基序列可以极大地影响其与阳离子肽相分离的倾向,仅嘌呤的RNA十聚体(AG)5很容易这样做,而仅嘧啶的RNA十聚体(CU)5则不会。此外,我们发现聚乙二醇大分子聚合体的存在和大小影响相分离的能力和凝聚形成的稳定性,这可能是由于聚乙二醇与RNA和肽的共缩聚。这项工作揭示了在生物学中发现的各种非编码rna中存在低复杂性的富含嘌呤或嘧啶的长非互补重复序列(AG或CU)。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Discrimination between Purine and Pyrimidine-Rich RNA in Liquid-Liquid Phase-Separated Condensates with Cationic Peptides and the Effect of Artificial Crowding Agents.

Membraneless organelles, often referred to as condensates or coacervates, are liquid-liquid phase-separated systems formed between noncoding RNAs and intrinsically disordered proteins. While the importance of different amino acid residues in short peptide-based condensates has been investigated, the role of the individual nucleobases or the type of heterocyclic structures, the purine vs pyrimidine nucleobases, is less researched. The cell's crowded environment has been mimicked in vitro to demonstrate its ability to induce the formation of condensates, but more research in this area is required, especially with respect to RNA-facilitated phase separation and the properties of the crowding agent, poly(ethylene glycol) (PEG). Herein, we have shown that the nucleotide base sequence of RNA can greatly influence its propensity to undergo phase separation with cationic peptides, with the purine-only RNA decamer (AG)5 readily doing so while the pyrimidine-only (CU)5 does not. Furthermore, we show that the presence and size of a PEG macromolecular crowder affects both the ability to phase separate and the stability of coacervates formed, possibly due to co-condensation of PEG with the RNA and peptides. This work sheds light on the presence of low-complexity long purine- or pyrimidine-rich noncomplementary repeat (AG or CU) sequences in various noncoding RNAs found in biology.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Biomacromolecules
Biomacromolecules 化学-高分子科学
CiteScore
10.60
自引率
4.80%
发文量
417
审稿时长
1.6 months
期刊介绍: Biomacromolecules is a leading forum for the dissemination of cutting-edge research at the interface of polymer science and biology. Submissions to Biomacromolecules should contain strong elements of innovation in terms of macromolecular design, synthesis and characterization, or in the application of polymer materials to biology and medicine. Topics covered by Biomacromolecules include, but are not exclusively limited to: sustainable polymers, polymers based on natural and renewable resources, degradable polymers, polymer conjugates, polymeric drugs, polymers in biocatalysis, biomacromolecular assembly, biomimetic polymers, polymer-biomineral hybrids, biomimetic-polymer processing, polymer recycling, bioactive polymer surfaces, original polymer design for biomedical applications such as immunotherapy, drug delivery, gene delivery, antimicrobial applications, diagnostic imaging and biosensing, polymers in tissue engineering and regenerative medicine, polymeric scaffolds and hydrogels for cell culture and delivery.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信