{"title":"通过材料体系优化提高混合超级电容器的安全性和性能","authors":"Mingxia Wu, Shengnan Xie, Yirong Zhou","doi":"10.1007/s11581-024-05895-6","DOIUrl":null,"url":null,"abstract":"<div><p>Hybrid supercapacitors (HSCs) integrate battery-type materials and capacitive materials into the same electrode by means of internal parallel, which greatly improve the energy density while maintaining the power density and meet the needs of more applications. However, different material systems have varying effects on the electrical performance and safety characteristics of HSCs. This paper conducted theoretical research on the electrical and thermal properties of key materials for HSCs to achieve performance improvement. The cathode was composed of lithium nickel cobalt manganate oxide (LiNi<sub>0.6</sub>Co<sub>0.2</sub>Mn<sub>0.2</sub>O<sub>2</sub>, NCM622) and activated carbon (AC). It was found that adding an appropriate amount of AC can reduce the internal resistance. However, an excessively high proportion of AC leaded to a decrease in compact density and a decline in electrochemical performance. The optimal NCM/AC ratio was determined to be 9:1. Moreover, a comparative study of different separator materials revealed that the use of polyethylene terephthalate (PET)/ceramic composite separators significantly improves the safety of HSCs, reducing the maximum temperature during thermal runaway by 30 °C, and exhibiting a high self-discharge retention rate of 90% after 350 days at 55 °C. Furthermore, the investigation of different carbon materials for the anode found that hard carbon (HC) possesses larger interlayer spacing, more structural defects, and irregular edge spaces, resulting in superior rate capability, cycling performance, and high/low-temperature characteristics. Through material optimization, the constructed HSCs achieved an energy density of 122.8 Wh kg<sup>−1</sup>, with 97.2% energy at 10 °C compared to 1 °C, a 99% energy retention rate after 5000 cycles, 76.24% energy at − 25 °C compared to 25 °C, and demonstrating exceptional safety properties.</p></div>","PeriodicalId":599,"journal":{"name":"Ionics","volume":"30 12","pages":"8417 - 8440"},"PeriodicalIF":2.6000,"publicationDate":"2024-10-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Enhancing safety and performance of hybrid supercapacitors through material system optimization\",\"authors\":\"Mingxia Wu, Shengnan Xie, Yirong Zhou\",\"doi\":\"10.1007/s11581-024-05895-6\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Hybrid supercapacitors (HSCs) integrate battery-type materials and capacitive materials into the same electrode by means of internal parallel, which greatly improve the energy density while maintaining the power density and meet the needs of more applications. However, different material systems have varying effects on the electrical performance and safety characteristics of HSCs. This paper conducted theoretical research on the electrical and thermal properties of key materials for HSCs to achieve performance improvement. The cathode was composed of lithium nickel cobalt manganate oxide (LiNi<sub>0.6</sub>Co<sub>0.2</sub>Mn<sub>0.2</sub>O<sub>2</sub>, NCM622) and activated carbon (AC). It was found that adding an appropriate amount of AC can reduce the internal resistance. However, an excessively high proportion of AC leaded to a decrease in compact density and a decline in electrochemical performance. The optimal NCM/AC ratio was determined to be 9:1. Moreover, a comparative study of different separator materials revealed that the use of polyethylene terephthalate (PET)/ceramic composite separators significantly improves the safety of HSCs, reducing the maximum temperature during thermal runaway by 30 °C, and exhibiting a high self-discharge retention rate of 90% after 350 days at 55 °C. Furthermore, the investigation of different carbon materials for the anode found that hard carbon (HC) possesses larger interlayer spacing, more structural defects, and irregular edge spaces, resulting in superior rate capability, cycling performance, and high/low-temperature characteristics. Through material optimization, the constructed HSCs achieved an energy density of 122.8 Wh kg<sup>−1</sup>, with 97.2% energy at 10 °C compared to 1 °C, a 99% energy retention rate after 5000 cycles, 76.24% energy at − 25 °C compared to 25 °C, and demonstrating exceptional safety properties.</p></div>\",\"PeriodicalId\":599,\"journal\":{\"name\":\"Ionics\",\"volume\":\"30 12\",\"pages\":\"8417 - 8440\"},\"PeriodicalIF\":2.6000,\"publicationDate\":\"2024-10-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Ionics\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s11581-024-05895-6\",\"RegionNum\":4,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"CHEMISTRY, PHYSICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Ionics","FirstCategoryId":"92","ListUrlMain":"https://link.springer.com/article/10.1007/s11581-024-05895-6","RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0
摘要
混合超级电容器(hsc)通过内部并联的方式将电池型材料和电容性材料集成到同一电极中,在保持功率密度的同时,大大提高了能量密度,满足了更多应用的需求。然而,不同的材料体系对hsc的电气性能和安全特性有不同的影响。本文对超导材料关键材料的电学和热学性能进行了理论研究,以实现性能的提升。阴极由锂镍钴锰酸盐(LiNi0.6Co0.2Mn0.2O2, NCM622)和活性炭(AC)组成。结果表明,加入适量的交流电可以降低内阻。然而,过高的交流比例会导致压实密度下降和电化学性能下降。确定最佳NCM/AC比为9:1。此外,对不同分离材料的对比研究表明,PET /陶瓷复合分离材料的使用显著提高了hsc的安全性,将热失控时的最高温度降低了30℃,在55℃下放置350天后的自放电保留率高达90%。此外,对不同碳材料的阳极研究发现,硬碳(HC)具有更大的层间距,更多的结构缺陷和不规则的边缘空间,从而具有更好的倍率能力,循环性能和高低温特性。通过材料优化,构建的hsc实现了122.8 Wh kg - 1的能量密度,在10°C下的能量比1°C高97.2%,在5000次循环后的能量保留率为99%,在- 25°C下的能量比25°C高76.24%,并且具有出色的安全性能。
Enhancing safety and performance of hybrid supercapacitors through material system optimization
Hybrid supercapacitors (HSCs) integrate battery-type materials and capacitive materials into the same electrode by means of internal parallel, which greatly improve the energy density while maintaining the power density and meet the needs of more applications. However, different material systems have varying effects on the electrical performance and safety characteristics of HSCs. This paper conducted theoretical research on the electrical and thermal properties of key materials for HSCs to achieve performance improvement. The cathode was composed of lithium nickel cobalt manganate oxide (LiNi0.6Co0.2Mn0.2O2, NCM622) and activated carbon (AC). It was found that adding an appropriate amount of AC can reduce the internal resistance. However, an excessively high proportion of AC leaded to a decrease in compact density and a decline in electrochemical performance. The optimal NCM/AC ratio was determined to be 9:1. Moreover, a comparative study of different separator materials revealed that the use of polyethylene terephthalate (PET)/ceramic composite separators significantly improves the safety of HSCs, reducing the maximum temperature during thermal runaway by 30 °C, and exhibiting a high self-discharge retention rate of 90% after 350 days at 55 °C. Furthermore, the investigation of different carbon materials for the anode found that hard carbon (HC) possesses larger interlayer spacing, more structural defects, and irregular edge spaces, resulting in superior rate capability, cycling performance, and high/low-temperature characteristics. Through material optimization, the constructed HSCs achieved an energy density of 122.8 Wh kg−1, with 97.2% energy at 10 °C compared to 1 °C, a 99% energy retention rate after 5000 cycles, 76.24% energy at − 25 °C compared to 25 °C, and demonstrating exceptional safety properties.
期刊介绍:
Ionics is publishing original results in the fields of science and technology of ionic motion. This includes theoretical, experimental and practical work on electrolytes, electrode, ionic/electronic interfaces, ionic transport aspects of corrosion, galvanic cells, e.g. for thermodynamic and kinetic studies, batteries, fuel cells, sensors and electrochromics. Fast solid ionic conductors are presently providing new opportunities in view of several advantages, in addition to conventional liquid electrolytes.