非预期形状对纳米厚度和微米延伸薄膜磁性能的影响

IF 1.6 4区 物理与天体物理 Q3 PHYSICS, APPLIED
G. P. Fuentes, D. B. O. Silva, L. K. C. S. Assis, L. A. P. Gonçalves, E. Padrón-Hernández
{"title":"非预期形状对纳米厚度和微米延伸薄膜磁性能的影响","authors":"G. P. Fuentes,&nbsp;D. B. O. Silva,&nbsp;L. K. C. S. Assis,&nbsp;L. A. P. Gonçalves,&nbsp;E. Padrón-Hernández","doi":"10.1007/s10948-024-06839-x","DOIUrl":null,"url":null,"abstract":"<div><p>The analysis of ferromagnetic resonance (FMR) through micromagnetic simulations is a powerful tool used to gain insight into the effects of shape on magnetization dynamics. Mathematical models incorporated into simulation programs have greatly facilitated the understanding of resulting magnetic behaviors. The present study aimed to investigate the influence of shape on the magnetization dynamics of Permalloy discs and stadium-like geometries of finite dimensions. The finite element numerical method was used to perform simulations, employing the Nmag simulator. To simulate the FMR spectra, the ringdown method was utilized, a common technique in computational micromagnetism. Resonance modes were identified using Fourier transform analysis. The novelty of this work is to demonstrate that in a film with a thickness of 50 nm and lateral dimensions less than 1000 nm, it cannot be considered as an infinite film. The results of the calculations showed that, for an in-plane field in a Py disk with these dimensions, there are resonance fields affected when the geometry is slightly stretched. This phenomenon was observed applying a field parallel to the plane of a stadium-shaped geometry. The effects of shape anisotropy remain relevant even in a 50 nm film with lateral dimensions exceeding 1000 nm. The aim of the study is to review results that are normally used for work with thin films. Assuming infinite dimensions and disregarding shape effects always requires care, since depending on the study in question, artifacts due to the shape effect may arise and be interpreted incorrectly.</p></div>","PeriodicalId":669,"journal":{"name":"Journal of Superconductivity and Novel Magnetism","volume":"38 1","pages":""},"PeriodicalIF":1.6000,"publicationDate":"2024-12-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"The Unexpected Shape Effects on Magnetic Properties of Films of Nanometer Thickness and Micrometer Extension\",\"authors\":\"G. P. Fuentes,&nbsp;D. B. O. Silva,&nbsp;L. K. C. S. Assis,&nbsp;L. A. P. Gonçalves,&nbsp;E. Padrón-Hernández\",\"doi\":\"10.1007/s10948-024-06839-x\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>The analysis of ferromagnetic resonance (FMR) through micromagnetic simulations is a powerful tool used to gain insight into the effects of shape on magnetization dynamics. Mathematical models incorporated into simulation programs have greatly facilitated the understanding of resulting magnetic behaviors. The present study aimed to investigate the influence of shape on the magnetization dynamics of Permalloy discs and stadium-like geometries of finite dimensions. The finite element numerical method was used to perform simulations, employing the Nmag simulator. To simulate the FMR spectra, the ringdown method was utilized, a common technique in computational micromagnetism. Resonance modes were identified using Fourier transform analysis. The novelty of this work is to demonstrate that in a film with a thickness of 50 nm and lateral dimensions less than 1000 nm, it cannot be considered as an infinite film. The results of the calculations showed that, for an in-plane field in a Py disk with these dimensions, there are resonance fields affected when the geometry is slightly stretched. This phenomenon was observed applying a field parallel to the plane of a stadium-shaped geometry. The effects of shape anisotropy remain relevant even in a 50 nm film with lateral dimensions exceeding 1000 nm. The aim of the study is to review results that are normally used for work with thin films. Assuming infinite dimensions and disregarding shape effects always requires care, since depending on the study in question, artifacts due to the shape effect may arise and be interpreted incorrectly.</p></div>\",\"PeriodicalId\":669,\"journal\":{\"name\":\"Journal of Superconductivity and Novel Magnetism\",\"volume\":\"38 1\",\"pages\":\"\"},\"PeriodicalIF\":1.6000,\"publicationDate\":\"2024-12-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Superconductivity and Novel Magnetism\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s10948-024-06839-x\",\"RegionNum\":4,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"PHYSICS, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Superconductivity and Novel Magnetism","FirstCategoryId":"101","ListUrlMain":"https://link.springer.com/article/10.1007/s10948-024-06839-x","RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"PHYSICS, APPLIED","Score":null,"Total":0}
引用次数: 0

摘要

通过微磁模拟分析铁磁共振(FMR)是了解形状对磁化动力学影响的有力工具。纳入模拟程序的数学模型极大地促进了对所产生的磁性行为的理解。本研究旨在探讨形状对有限维坡莫合金圆盘和体育场状几何结构磁化动力学的影响。采用有限元数值模拟方法,采用Nmag仿真器进行仿真。为了模拟FMR光谱,采用了计算微磁学中常用的环衰法。利用傅里叶变换分析识别共振模式。这项工作的新颖之处在于证明了在厚度为50nm,横向尺寸小于1000nm的薄膜中,它不能被认为是无限的薄膜。计算结果表明,对于具有这些尺寸的Py盘的面内场,当几何形状稍微拉伸时,会产生共振场。这种现象是用一个平行于体育场形状几何平面的电场观察到的。即使在横向尺寸超过1000纳米的50纳米薄膜中,形状各向异性的影响仍然相关。这项研究的目的是回顾通常用于薄膜工作的结果。假设无限维度并忽略形状效应总是需要小心的,因为根据所讨论的研究,由于形状效应而产生的伪影可能会出现并被错误地解释。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
The Unexpected Shape Effects on Magnetic Properties of Films of Nanometer Thickness and Micrometer Extension

The analysis of ferromagnetic resonance (FMR) through micromagnetic simulations is a powerful tool used to gain insight into the effects of shape on magnetization dynamics. Mathematical models incorporated into simulation programs have greatly facilitated the understanding of resulting magnetic behaviors. The present study aimed to investigate the influence of shape on the magnetization dynamics of Permalloy discs and stadium-like geometries of finite dimensions. The finite element numerical method was used to perform simulations, employing the Nmag simulator. To simulate the FMR spectra, the ringdown method was utilized, a common technique in computational micromagnetism. Resonance modes were identified using Fourier transform analysis. The novelty of this work is to demonstrate that in a film with a thickness of 50 nm and lateral dimensions less than 1000 nm, it cannot be considered as an infinite film. The results of the calculations showed that, for an in-plane field in a Py disk with these dimensions, there are resonance fields affected when the geometry is slightly stretched. This phenomenon was observed applying a field parallel to the plane of a stadium-shaped geometry. The effects of shape anisotropy remain relevant even in a 50 nm film with lateral dimensions exceeding 1000 nm. The aim of the study is to review results that are normally used for work with thin films. Assuming infinite dimensions and disregarding shape effects always requires care, since depending on the study in question, artifacts due to the shape effect may arise and be interpreted incorrectly.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Superconductivity and Novel Magnetism
Journal of Superconductivity and Novel Magnetism 物理-物理:凝聚态物理
CiteScore
3.70
自引率
11.10%
发文量
342
审稿时长
3.5 months
期刊介绍: The Journal of Superconductivity and Novel Magnetism serves as the international forum for the most current research and ideas in these fields. This highly acclaimed journal publishes peer-reviewed original papers, conference proceedings and invited review articles that examine all aspects of the science and technology of superconductivity, including new materials, new mechanisms, basic and technological properties, new phenomena, and small- and large-scale applications. Novel magnetism, which is expanding rapidly, is also featured in the journal. The journal focuses on such areas as spintronics, magnetic semiconductors, properties of magnetic multilayers, magnetoresistive materials and structures, magnetic oxides, etc. Novel superconducting and magnetic materials are complex compounds, and the journal publishes articles related to all aspects their study, such as sample preparation, spectroscopy and transport properties as well as various applications.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信