{"title":"用于增强锂存储的掺铝高熵氧化物焦绿石","authors":"Yiming Tan, Xinyan Jiang, Luyao Zheng, Zhihui Chen","doi":"10.1007/s11581-024-05899-2","DOIUrl":null,"url":null,"abstract":"<div><p>High-entropy oxides (HEOs), composed of five or more distinct metal ions within a unified crystalline lattice, exhibit exceptional electrochemical capacity and catalytic properties. These characteristics make them highly valued materials for lithium-ion batteries (LIBs). However, their inherent low conductivities pose a significant challenge to further advancements in HEO development. Herein, a new kind of HEO, (Y<sub>0.2</sub>La<sub>0.2</sub>Ce<sub>0.2</sub>Ca<sub>0.2</sub>Mg<sub>0.2</sub>)<sub>2</sub>(Sn<sub>1-x</sub>Al<sub>x</sub>)<sub>2</sub>O<sub>7</sub> is synthesized via a facile co-precipitation reaction, with various aluminum (Al) content doping (<i>x</i> = 0, 0.05, 0.1, 0.15). The optimized sample (<i>x</i> = 0.1) exhibits a superior initial discharge specific capacity of 1209.9 mAh g<sup>−1</sup> at 0.1 mA g<sup>−1</sup>. This study provides clear evidence that incorporating metal doping into the structure of HEOs is an exceptionally effective strategy for enhancing its electrochemical performance as anode materials in LIBs.</p></div>","PeriodicalId":599,"journal":{"name":"Ionics","volume":"30 12","pages":"8007 - 8014"},"PeriodicalIF":2.4000,"publicationDate":"2024-10-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Aluminum-doped high-entropy oxide pyrochlore for enhanced lithium storage\",\"authors\":\"Yiming Tan, Xinyan Jiang, Luyao Zheng, Zhihui Chen\",\"doi\":\"10.1007/s11581-024-05899-2\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>High-entropy oxides (HEOs), composed of five or more distinct metal ions within a unified crystalline lattice, exhibit exceptional electrochemical capacity and catalytic properties. These characteristics make them highly valued materials for lithium-ion batteries (LIBs). However, their inherent low conductivities pose a significant challenge to further advancements in HEO development. Herein, a new kind of HEO, (Y<sub>0.2</sub>La<sub>0.2</sub>Ce<sub>0.2</sub>Ca<sub>0.2</sub>Mg<sub>0.2</sub>)<sub>2</sub>(Sn<sub>1-x</sub>Al<sub>x</sub>)<sub>2</sub>O<sub>7</sub> is synthesized via a facile co-precipitation reaction, with various aluminum (Al) content doping (<i>x</i> = 0, 0.05, 0.1, 0.15). The optimized sample (<i>x</i> = 0.1) exhibits a superior initial discharge specific capacity of 1209.9 mAh g<sup>−1</sup> at 0.1 mA g<sup>−1</sup>. This study provides clear evidence that incorporating metal doping into the structure of HEOs is an exceptionally effective strategy for enhancing its electrochemical performance as anode materials in LIBs.</p></div>\",\"PeriodicalId\":599,\"journal\":{\"name\":\"Ionics\",\"volume\":\"30 12\",\"pages\":\"8007 - 8014\"},\"PeriodicalIF\":2.4000,\"publicationDate\":\"2024-10-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Ionics\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s11581-024-05899-2\",\"RegionNum\":4,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"CHEMISTRY, PHYSICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Ionics","FirstCategoryId":"92","ListUrlMain":"https://link.springer.com/article/10.1007/s11581-024-05899-2","RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0
摘要
高熵氧化物(HEOs),由五种或更多不同的金属离子在一个统一的晶格中组成,表现出优异的电化学容量和催化性能。这些特性使它们成为锂离子电池(LIBs)的高价值材料。然而,其固有的低电导率对HEO的进一步发展构成了重大挑战。本文通过共沉淀法合成了一种新型HEO (Y0.2La0.2Ce0.2Ca0.2Mg0.2)2(Sn1-xAlx)2O7,并掺杂了不同含量的铝(Al) (x = 0,0.05, 0.1, 0.15)。优化后的样品(x = 0.1)在0.1 mA g−1时具有1209.9 mAh g−1的优越初始放电比容量。这项研究提供了明确的证据,表明将金属掺杂到HEOs结构中是提高其作为锂离子电池阳极材料电化学性能的一种非常有效的策略。
Aluminum-doped high-entropy oxide pyrochlore for enhanced lithium storage
High-entropy oxides (HEOs), composed of five or more distinct metal ions within a unified crystalline lattice, exhibit exceptional electrochemical capacity and catalytic properties. These characteristics make them highly valued materials for lithium-ion batteries (LIBs). However, their inherent low conductivities pose a significant challenge to further advancements in HEO development. Herein, a new kind of HEO, (Y0.2La0.2Ce0.2Ca0.2Mg0.2)2(Sn1-xAlx)2O7 is synthesized via a facile co-precipitation reaction, with various aluminum (Al) content doping (x = 0, 0.05, 0.1, 0.15). The optimized sample (x = 0.1) exhibits a superior initial discharge specific capacity of 1209.9 mAh g−1 at 0.1 mA g−1. This study provides clear evidence that incorporating metal doping into the structure of HEOs is an exceptionally effective strategy for enhancing its electrochemical performance as anode materials in LIBs.
期刊介绍:
Ionics is publishing original results in the fields of science and technology of ionic motion. This includes theoretical, experimental and practical work on electrolytes, electrode, ionic/electronic interfaces, ionic transport aspects of corrosion, galvanic cells, e.g. for thermodynamic and kinetic studies, batteries, fuel cells, sensors and electrochromics. Fast solid ionic conductors are presently providing new opportunities in view of several advantages, in addition to conventional liquid electrolytes.